Skip to main content

Endovascular Treatment of the Arteries of the Foot

  • Chapter
  • First Online:
Textbook of Catheter-Based Cardiovascular Interventions

Abstract

This chapter gives a detailed description of the below-the-ankle vascular anatomy, vessel disease distribution, and treatment strategies for percutaneous revascularization. A description of anatomic variants that are important for revascularization treatment of ischemic patients is provided. Furthermore, vessel disease distribution in a large series of treated patients is reported. Current concepts in endovascular treatment of patients with critical limb ischemia, such as the «angiosome concept» and the concept of «wound-related artery» are also explained. The chapter also describes standard and extreme revascularization techniques in order to provide the reader with a complete overview of below-the-ankle peripheral artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Standring S. Gray’s anatomy. The anatomical basis of clinical practice. 41st ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  2. Alson MD, Lang EV, Kaufman JA. Pedal arterial imaging. J Vasc Interv Radiol. 1997;8(1 Pt 1):9–18.

    Article  PubMed  CAS  Google Scholar 

  3. Manzi M, Cester G, Palena LM, Alek J, Candeo A, Ferraresi R. Vascular imaging of the foot: the first step toward endovascular recanalization. Radiographics. 2011;31(6):1623–36.

    Article  PubMed  Google Scholar 

  4. Yamada T, Gloviczki P, Bower TC, Naessens JM, Carmichael SW. Variations of the arterial anatomy of the foot. Am J Surg. 1993;166(2):130–5. discussion 135.

    Article  PubMed  CAS  Google Scholar 

  5. Graziani L, Silvestro A, Monge L, Boffano GM, Kokaly F, Casadidio I, Giannini F. Transluminal angioplasty of peroneal artery branches in diabetics: initial technical experience. Cardiovasc Intervent Radiol. 2008;31(1):49–55.

    Article  PubMed  Google Scholar 

  6. Darcy MD. Lower-extremity arteriography: current approach and techniques. Radiology. 1991;178(3):615–21.

    Article  PubMed  CAS  Google Scholar 

  7. Madhusudhan KS, Sharma S, Srivastava DN, Thulkar S, Mehta SN, Prasad G, Seenu V, Agarwal S. Comparison of intra-arterial digital subtraction angiography using carbon dioxide by ‘home made’ delivery system and conventional iodinated contrast media in the evaluation of peripheral arterial occlusive disease of the lower limbs. J Med Imaging Radiat Oncol. 2009;53(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  8. Manke C, Marcus C, Page A, Puey J, Batakis O, Fog A. Pain in femoral arteriography. A double-blind, randomized, clinical study comparing safety and efficacy of the iso-osmolar iodixanol 270 mgI/ml and the low-osmolar iomeprol 300 mgI/ml in 9 European centers. Acta Radiol. 2003;44(6):590–6.

    PubMed  CAS  Google Scholar 

  9. de Almeida MC, de Arruda MA, Teivelis MP, Kuzniec S, Nishinari K, Krutman M, Halpern H, Wolosker N. Carbon dioxide is a cost-effective contrast medium to guide revascularization of TASC A and TASC B femoropopliteal occlusive disease. Ann Vasc Surg. 2014;28(6):1473–8.

    Article  Google Scholar 

  10. Fujihara M, Kawasaki D, Shintani Y, Fukunaga M, Nakama T, Koshida R, Higashimori A, Yokoi Y, Investigators COAR. Endovascular therapy by CO2 angiography to prevent contrast-induced nephropathy in patients with chronic kidney disease: a prospective multicenter trial of CO2 angiography registry. Catheter Cardiovasc Interv. 2015;85(5):870–7.

    Article  PubMed  Google Scholar 

  11. Hawkins IF, Cho KJ, Caridi JG. Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin N Am. 2009;47(5):813–25. v–vi.

    Article  PubMed  Google Scholar 

  12. Kawasaki D, Fujii K, Fukunaga M, Masutani M, Nakata A, Masuyama T. Safety and efficacy of endovascular therapy with a simple homemade carbon dioxide delivery system in patients with ileofemoral artery diseases. Circ J. 2012;76(7):1722–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nadolski GJ, Stavropoulos SW. Contrast alternatives for iodinated contrast allergy and renal dysfunction: options and limitations. J Vasc Surg. 2013;57(2):593–8.

    Article  PubMed  Google Scholar 

  14. Back MR, Caridi JG, Hawkins IF Jr, Seeger JM. Angiography with carbon dioxide (CO2). Surg Clin North Am. 1998;78(4):575–91.

    Article  PubMed  CAS  Google Scholar 

  15. Caridi JG, Hawkins IF Jr. CO2 digital subtraction angiography: potential complications and their prevention. J Vasc Interv Radiol. 1997;8(3):383–91.

    Article  PubMed  CAS  Google Scholar 

  16. Hawkins IF Jr, Wilcox CS, Kerns SR, Sabatelli FW. CO2 digital angiography: a safer contrast agent for renal vascular imaging? Am J Kidney Dis. 1994;24(4):685–94.

    Article  PubMed  Google Scholar 

  17. Moos JM, Ham SW, Han SM, Lew WK, Hua HT, Hood DB, Rowe VL, Weaver FA. Safety of carbon dioxide digital subtraction angiography. Arch Surg. 2011;146(12):1428–32.

    Article  PubMed  Google Scholar 

  18. Oliva VL, Denbow N, Therasse E, Common AA, Harel C, Giroux MF, Soulez G. Digital subtraction angiography of the abdominal aorta and lower extremities: carbon dioxide versus iodinated contrast material. J Vasc Interv Radiol. 1999;10(6):723–31.

    Article  PubMed  CAS  Google Scholar 

  19. Rolland Y, Duvauferrier R, Lucas A, Gourlay C, Morcet N, Rambeau M, Chaperon J. Lower limb angiography: a prospective study comparing carbon dioxide with iodinated contrast material in 30 patients. AJR Am J Roentgenol. 1998;171(2):333–7.

    Article  PubMed  CAS  Google Scholar 

  20. Weaver FA, Pentecost MJ, Yellin AE, Davis S, Finck E, Teitelbaum G. Clinical applications of carbon dioxide/digital subtraction arteriography. J Vasc Surg. 1991;13(2):266–72. discussion 272–3.

    Article  PubMed  CAS  Google Scholar 

  21. Palena LM, Diaz-Sandoval LJ, Candeo A, Brigato C, Sultato E, Manzi M. Automated carbon dioxide angiography for the evaluation and endovascular treatment of diabetic patients with critical limb ischemia. J Endovasc Ther. 2016;23(1):40–8.

    Article  PubMed  Google Scholar 

  22. Palena LM, Sacco ZD, Brigato C, Sultato E, Barra D, Candeo A, Manzi M. Discomfort assessment in peripheral angiography: randomized clinical trial of Iodixanol 270 versus Ioversol 320 in diabetics with critical limb ischemia. Catheter Cardiovasc Interv. 2014;84(6):1019–25.

    Article  PubMed  Google Scholar 

  23. Scalise F, Novelli E, Auguadro C, Casali V, Manfredi M, Zannoli R. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography. J Invasive Cardiol. 2015;27(1):20–6.

    PubMed  Google Scholar 

  24. Attinger CE, Evans KK, Bulan E, Blume P, Cooper P. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93S.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor GI, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102(3):599–616. discussion 617–8.

    Article  PubMed  CAS  Google Scholar 

  26. Hinchliffe RJ, Andros G, Apelqvist J, Bakker K, Friederichs S, Lammer J, Lepantalo M, Mills JL, Reekers J, Shearman CP, Valk G, Zierler RE, Schaper NC. A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes Metab Res Rev. 2012;28(Suppl 1):179–217.

    Article  PubMed  Google Scholar 

  27. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Bell K, Caporusso J, Durand-Zaleski I, Komori K, Lammer J, Liapis C, Novo S, Razavi M, Robbs J, Schaper N, Shigematsu H, Sapoval M, White C, White J, Clement D, Creager M, Jaff M, Mohler E 3rd, Rutherford RB, Sheehan P, Sillesen H, Rosenfield K. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–75.

    Article  PubMed  Google Scholar 

  28. Peregrin JH, Koznar B, Kovac J, Lastovickova J, Novotny J, Vedlich D, Skibova J. PTA of infrapopliteal arteries: long-term clinical follow-up and analysis of factors influencing clinical outcome. Cardiovasc Intervent Radiol. 2010;33(4):720–5.

    Article  PubMed  Google Scholar 

  29. Faglia E, Clerici G, Clerissi J, Mantero M, Caminiti M, Quarantiello A, Curci V, Lupattelli T, Morabito A. When is a technically successful peripheral angioplasty effective in preventing above-the-ankle amputation in diabetic patients with critical limb ischaemia? Diabet Med. 2007;24(8):823–9.

    Article  PubMed  CAS  Google Scholar 

  30. Alexandrescu V, Hubermont G. Primary infragenicular angioplasty for diabetic neuroischemic foot ulcers following the angiosome distribution: a new paradigm for the vascular interventionist? Diab Metab Syndr Obes. 2011;4:327–36.

    Article  Google Scholar 

  31. Alexandrescu V, Soderstrom M, Venermo M. Angiosome theory: fact or fiction? Scand J Surg. 2012;101(2):125–31.

    Article  PubMed  CAS  Google Scholar 

  32. Alexandrescu VA, Hubermont G, Philips Y, Guillaumie B, Ngongang C, Vandenbossche P, Azdad K, Ledent G, Horion J. Selective primary angioplasty following an angiosome model of reperfusion in the treatment of Wagner 1–4 diabetic foot lesions: practice in a multidisciplinary diabetic limb service. J Endovasc Ther. 2008;15(5):580–93.

    Article  PubMed  Google Scholar 

  33. Iida O, Nanto S, Uematsu M, Ikeoka K, Okamoto S, Dohi T, Fujita M, Terashi H, Nagata S. Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2010;75(6):830–6.

    PubMed  Google Scholar 

  34. Neville RF, Attinger CE, Bulan EJ, Ducic I, Thomassen M, Sidawy AN. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23(3):367–73.

    Article  PubMed  Google Scholar 

  35. Biancari F, Juvonen T. Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2014;47(5):517–22.

    Article  PubMed  CAS  Google Scholar 

  36. Bosanquet DC, Glasbey JC, Williams IM, Twine CP. Systematic review and meta-analysis of direct versus indirect angiosomal revascularisation of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48(1):88–97.

    Article  PubMed  CAS  Google Scholar 

  37. Huang TY, Huang TS, Wang YC, Huang PF, Yu HC, Yeh CH. Direct revascularization with the angiosome concept for lower limb ischemia: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(34):e1427.

    Article  Google Scholar 

  38. Azuma N, Uchida H, Kokubo T, Koya A, Akasaka N, Sasajima T. Factors influencing wound healing of critical ischaemic foot after bypass surgery: is the angiosome important in selecting bypass target artery? Eur J Vasc Endovasc Surg. 2012;43(3):322–8.

    Article  PubMed  CAS  Google Scholar 

  39. Varela C, Acin F, de Haro J, Bleda S, Esparza L, March JR. The role of foot collateral vessels on ulcer healing and limb salvage after successful endovascular and surgical distal procedures according to an angiosome model. Vasc Endovasc Surg. 2010;44(8):654–60.

    Article  Google Scholar 

  40. Abdelhamid MF, Davies RS, Rai S, Hopkins JD, Duddy MJ, Vohra RK. Below-the-ankle angioplasty is a feasible and effective intervention for critical leg ischaemia. Eur J Vasc Endovasc Surg. 2010;39(6):762–8.

    Article  PubMed  CAS  Google Scholar 

  41. Fusaro M, Dalla Paola L, Biondi-Zoccai G. Pedal-plantar loop technique for a challenging below-the-knee chronic total occlusion: a novel approach to percutaneous revascularization in critical lower limb ischemia. J Invasive Cardiol. 2007;19(2):E34–7.

    PubMed  Google Scholar 

  42. Fusaro M, Dalla Paola L, Biondi-Zoccai GG. Retrograde posterior tibial artery access for below-the-knee percutaneous revascularization by means of sheathless approach and double wire technique. Minerva Cardioangiol. 2006;54(6):773–7.

    PubMed  CAS  Google Scholar 

  43. Fusaro M, Tashani A, Mollichelli N, Medda M, Inglese L, Biondi-Zoccai GG. Retrograde pedal artery access for below-the-knee percutaneous revascularisation. J Cardiovasc Med (Hagerstown). 2007;8(3):216–8.

    Article  Google Scholar 

  44. Katsanos K, Diamantopoulos A, Spiliopoulos S, Karnabatidis D, Siablis D. Below-the-ankle angioplasty and stenting for limb salvage: anatomical considerations and long-term outcomes. Cardiovasc Intervent Radiol. 2013;36(4):926–35.

    Article  PubMed  Google Scholar 

  45. Kawarada O, Yokoi Y, Higashimori A, Waratani N, Waseda K, Honda Y, Fitzgerald PJ. Stent-assisted below-the-ankle angioplasty for limb salvage. J Endovasc Ther. 2011;18(1):32–42.

    Article  PubMed  Google Scholar 

  46. Kawarada O, Yokoi Y, Sekii H, Higashiue S. Retrograde crossing through the pedal arch for totally occluded tibial artery. J Interv Cardiol. 2008;21(4):342–6.

    Article  PubMed  Google Scholar 

  47. Manzi M, Fusaro M, Ceccacci T, Erente G, Dalla Paola L, Brocco E. Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg. 2009;50(3):331–7.

    CAS  Google Scholar 

  48. Manzi M, Palena LM. Retrograde percutaneous transmetatarsal artery access: new approach for extreme revascularization in challenging cases of critical limb ischemia. Cardiovasc Intervent Radiol. 2013;36(2):554–7.

    Article  PubMed  Google Scholar 

  49. Manzi M, Palena LM, Brocco E. Is digital arteries recanalization useful to preserve the foot functionality and avoid toes amputation, after pedal recanalization? Clinical results. J Cardiovasc Surg. 2012;53(1):61–8.

    CAS  Google Scholar 

  50. Palena LM, Brocco E, Manzi M. The clinical utility of below-the-ankle angioplasty using “transmetatarsal artery access” in complex cases of CLI. Catheter Cardiovasc Interv. 2014;83(1):123–9.

    Article  PubMed  Google Scholar 

  51. Palena LM, Manzi M. Extreme below-the-knee interventions: retrograde transmetatarsal or transplantar arch access for foot salvage in challenging cases of critical limb ischemia. J Endovasc Ther. 2012;19(6):805–11.

    Article  PubMed  Google Scholar 

  52. Zhu YQ, Zhao JG, Li MH, Liu F, Wang JB, Cheng YS, Wang J, Li J. Retrograde transdorsal-to-plantar or transplantar-to-dorsal intraluminal re-entry following unsuccessful subintimal angioplasty for below-the-ankle arterial occlusion. J Endovasc Ther. 2010;17(6):712–21.

    Article  PubMed  Google Scholar 

  53. Zhu YQ, Zhao JG, Liu F, Wang JB, Cheng YS, Li MH, Wang J, Li J. Subintimal angioplasty for below-the-ankle arterial occlusions in diabetic patients with chronic critical limb ischemia. J Endovasc Ther. 2009;16(5):604–12.

    Article  PubMed  Google Scholar 

  54. Katsanos K, Spiliopoulos S, Diamantopoulos A, Karnabatidis D, Sabharwal T, Siablis D. Systematic review of infrapopliteal drug-eluting stents: a meta-analysis of randomized controlled trials. Cardiovasc Intervent Radiol. 2013;36(3):645–58.

    Article  PubMed  Google Scholar 

  55. Ferraresi R, Palena LM, Mauri G, Manzi M. Tips and tricks for a correct “endo approach”. J Cardiovasc Surg. 2013;54(6):685–711.

    CAS  Google Scholar 

  56. Gandini R, Pipitone V, Stefanini M, Maresca L, Spinelli A, Colangelo V, Reale CA, Pampana E, Simonetti G. The “Safari” technique to perform difficult subintimal infragenicular vessels. Cardiovasc Intervent Radiol. 2007;30(3):469–73.

    Article  PubMed  Google Scholar 

  57. Spinosa DJ, Harthun NL, Bissonette EA, Cage D, Leung DA, Angle JF, Hagspiel KD, Kern JA, Crosby I, Wellons HA, Hartwell GD, Matsumoto AH. Subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) for subintimal recanalization to treat chronic critical limb ischemia. J Vasc Interv Radiol. 2005;16(1):37–44.

    Article  PubMed  Google Scholar 

  58. Spinosa DJ, Leung DA, Harthun NL, Cage DL, Fritz Angle J, Hagspiel KD, Matsumoto AH. Simultaneous antegrade and retrograde access for subintimal recanalization of peripheral arterial occlusion. J Vasc Interv Radiol. 2003;14(11):1449–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ferraresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraresi, R., Palena, L.M., Mauri, G., Lorenzoni, R., Manzi, M. (2018). Endovascular Treatment of the Arteries of the Foot. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics