Skip to main content

Membrane Algorithms

  • Chapter
  • First Online:
Real-life Applications with Membrane Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 25))

Abstract

Membrane Algorithms (MAs) area is focusing on developing new variants of meta-heuristic algorithms for solving complex optimization problems by using either the hierarchical or network membrane structures, evolution rules and computational capabilities of membrane systems and the methods and well-established techniques employed in Evolutionary Computation. MAs studied in this volume, and described in this Chapter, refer to four variants of meta-heuristics using the hierarchical structure of the membrane systems - nested membrane structure, one-level membrane structure, hybrid membrane structure and dynamic membrane structure; whereas those using the network structure consist of two subcategories - statical network structure and dynamical network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becerra, R.L., and C.A.C. Coello. 2006. Cultured differential evolution for constrained optimization. Computer Methods in Applied Mechanics and Engineering 195 (33–36): 4303–4322.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardini, F., and M. Gheorghe. 2008. Population P systems. Journal of Universal Computer Science 10 (5): 509–539.

    MathSciNet  Google Scholar 

  3. Burke, E., S. Gustafson, and G. Kendall. 2004. Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8 (1): 47–62.

    Article  Google Scholar 

  4. Chen, H., and J. Lu. 2012. A constrained optimization evolutionary algorithm based on membrane computing. Journal of Digital Information Management 10 (2): 121–125.

    Google Scholar 

  5. Cheng, J., G. Zhang, and X. Zeng. 2011. A novel membrane algorithm based on differential evolution for numerical optimization. International Journal of Unconventional Computing 7 (3): 159–183.

    Google Scholar 

  6. Cheng, J., G. Zhang, and T. Wang. 2015. A membrane-inspired evolutionary algorithm based on population P systems and differential evolution for multi-objective optimization. Journal of Computational and Theoretical Nanoscience 12 (7): 1150–1160.

    Article  Google Scholar 

  7. Coello, C.A.C., and N.C. Cortés. 2004. Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization 36 (5): 607–634.

    Article  MathSciNet  Google Scholar 

  8. Coello, C.A.C., G.B. Lamont, and D.A.V. Veldhuizen. 2007. Evolutionary algorithms for solving multi-objective problems, 2nd ed. New York: Springer.

    MATH  Google Scholar 

  9. Deb, K. 2000. An efficient constraint handling method for genetic algorithm. Computer Methods in Applied Mechanics and Engineering 186 (2–4): 311–338.

    Article  MATH  Google Scholar 

  10. Deb, K., M. Mohan, and S. Mishra. 2005. Evaluating the \(\epsilon \)-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 13 (4): 501–525.

    Article  Google Scholar 

  11. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2): 182–197.

    Article  Google Scholar 

  12. Elias, S., V. Gokul, K. Krithivasan, M. Gheorghe, and G. Zhang. 2012. A variant of the distributed P system for real time cross layer optimization. Journal of Universal Computer Science 18 (13): 1760–1781.

    MathSciNet  MATH  Google Scholar 

  13. Escuela, G., and M.A. Gutiérrez-Naranjo. 2010. An application of genetic algorithms to membrane computing. In Proceedings of the Eighth Brainstorming Week on Membrane Computing, 101–108.

    Google Scholar 

  14. Folino, G., C. Pizzuti, and G. Spezzano. 2001. Parallel hybrid method for SAT that couples genetic algorithms and local search. IEEE Transactions on Evolutionary Computation 5 (4): 323–334.

    Article  MATH  Google Scholar 

  15. Gao, H., and J. Cao. 2012. Membrane-inspired quantum shuffled frog leaping algorithm for spectrum allocation. Journal of Systems Engineering and Electronics 23 (5): 679–688.

    Article  Google Scholar 

  16. Gao, H., J. Cao, and Y. Zhao. 2012. Membrane quantum particle swarm optimisation for cognitive radio spectrum allocation. International Journal of Computer Applications in Technology 43 (4): 359–365.

    Article  Google Scholar 

  17. García, S., D. Molina, M. Lozano, and F. Herrera. 2009. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15: 617–644.

    Article  MATH  Google Scholar 

  18. Garey, M., and D. Johnson. 1979. Computers and intractability: a guide to the theory of NP-completeness. New York: W. H. Freeman & Co.

    MATH  Google Scholar 

  19. Glover, F., E. Taillard, and D. de Werra. 1993. A users guide to tabu search. Annals of Operations Research 41 (1): 3–28.

    Article  MATH  Google Scholar 

  20. Gottlieb, J., E. Marchiori, and C. Rossi. 2001. Evolutionary algorithms for the satisfiability problem. Evolutionary Computation 10 (1): 35–50.

    Article  Google Scholar 

  21. Hajela, P., and J.S. Yoo. 1999. Immune network modelling in design optimization. In New Ideas in Optimization, ed. D. Corne, M. Dorigo, and F. Glover, 167–183. New York: McGraw-Hill.

    Google Scholar 

  22. Han, K., and J. Kim. 2000. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of IEEE Congress on Evolutionary Computation, 1354–1360.

    Google Scholar 

  23. Han, K., and J. Kim. 2002. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6 (6): 580–593.

    Article  MathSciNet  Google Scholar 

  24. Han, K., and J. Kim. 2004. Quantum-inspired evolutionary algorithms with a new termination criterion, H\(_{\epsilon }\) gate, and two-phase scheme. IEEE Transactions on Evolutionary Computation 8 (2): 156–169.

    Article  Google Scholar 

  25. Herrera, F., and M. Lozano. 1996. Adaptation of genetic algorithm parameters based on fuzzy logic controllers. In F. Herrera, J.L. Verdegay (eds.), Genetic Algorithms and Soft Computing, Physica-Verlag, pages 95–125,

    Google Scholar 

  26. Huang, L., and I.H. Suh. 2009. Controller design for a marine diesel engine using membrane computing. International Journal of Innovative Computing, Information and Control 5 (4): 899–912.

    Google Scholar 

  27. Huang, L., X. He, N. Wang, and Y. Xie. 2007. P systems based multi-objective optimization algorithm. Progress in Natural Science 17 (4): 458–465.

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, L., L. Sun, N. Wang, and X. Jin. 2007. Multiobjective optimization of simulated moving bed by a kind of tissue P system. Chinese Journal of Chemical Engineering 15 (5): 683–690.

    Article  Google Scholar 

  29. Huang, F., L. Wang, and Q. He. 2007. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation 186 (1): 340–356.

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, L., N. Wang, and J. Zhao. 2008. Multiobjective Optimization for Controller Design. Acta Automatica Sinica 34 (4): 472–477.

    Article  Google Scholar 

  31. Huang, L., I.H. Suh, and A. Abraham. 2011. Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Information Sciences 181 (11): 2370–2391.

    Article  Google Scholar 

  32. Huang, X., G. Zhang, H. Rong, and F. Ipate. 2012. Evolutionary design of a simple membrane system. In Membrane Computing (CMC 2011), ed. M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, and S. Verlan, 203–214. Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  33. Karaboga, D., and B. Basturk. 2007. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing (IFSA 2007), ed. P. Melin, O. Castillo, L.T. Aguilar, J. Kacprzyk, and W. Pedrycz, 789–798. Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  34. Krasnogor, N., and J. Smith. 2005. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation 9 (5): 474–488.

    Article  Google Scholar 

  35. Kukkonen, S., and J. Lampinen. 2005. GDE3: the third evolution step of generalized differential evolution. In Proceedings of IEEE Congress on Evolutionary Computation, 443–450.

    Google Scholar 

  36. Leporati, A., and D. Pagani. 2006. A membrane algorithm for the min storage problem. In Membrane Computing (WMC 7), vol. 4361, ed. H.J. Hoogeboom, G. Păun, G. Rozenberg, and A. Salomaa, 443–462. Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  37. Li, H., and Q.F. Zhang. 2009. Multiobjective optimization problems with complicated Pareto sets. MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation 13 (2): 284–302.

    Article  Google Scholar 

  38. Li, B., and Z. Zhuang. 2002. Genetic algorithm based on quantum probability representation. In Intelligent Data Engineering and Automated Learning (IDEAL 2002), vol. 2412, ed. H. Yin, N. Allinson, R. Freeman, J. Keane, and S. Hubbard, 500–505. Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  39. Liu, C., G. Zhang, X. Zhang, and H. Liu. 2009. A memetic algorithm based on P systems for IIR digital filter design. In Proceedings of the Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, 330–334.

    Google Scholar 

  40. Liu, C., G. Zhang, Y. Zhu, C. Fang, and H. Liu. 2009. A quantum-inspired evolutionary algorithm based on P systems for radar emitter signals. In Proceedings of the 8th IEEE International Conference on Dependable, Autonomic and Secure Computing, 24–28.

    Google Scholar 

  41. Liu, H., Z. Cai, and Y. Wang. 2010. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing 10 (2): 629–640.

    Article  Google Scholar 

  42. Liu, C., G. Zhang, H. Liu, M. Gheorghe, and F. Ipate. 2010. An improved membrane algorithm for solving time-frequency atom decomposition. In Membrane Computing (WMC 2009), vol. 5957, ed. M.J. Gh Păun, A. Pérez-Jiménez, G.Rozenberg Riscos-Núñez, and A. Salomaa, 371–384. Lecture Notes in Computer Science Berlin: Springer.

    Chapter  Google Scholar 

  43. Liu, C., M. Han, and X. Wang. 2011. A multi-objective evolutionary algorithm based on membrane systems. In Proceedings of the 4th International Workshop on Advanced Computational Intelligence, 103–109.

    Google Scholar 

  44. Liu, C., M. Han, and X. Wang. 2012. A novel evolutionary membrane algorithm for global numerical optimization. In Proceedings of the 3rd International Conference on Intelligent Control and Information Processing, 727–732.

    Google Scholar 

  45. Mezura-Montes, E., and C.A.C. Coello. 2005. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9 (1): 1–17.

    Article  MATH  Google Scholar 

  46. Nelder, J., and R. Mead. 1965. A simplex method for function minimization. The Computer Journal 7 (4): 308–313.

    Article  MathSciNet  MATH  Google Scholar 

  47. Nishida, T. 2004. An application of P systems: a new algorithm for NP-complete optimization problems. In Proceedings of the 8th World Multi-Conference on Systems, Cybernetics and Informatics, Vol. 5, 109–112.

    Google Scholar 

  48. Nishida, T. 2005. Membrane algorithm: an approximate algorithm for NP-complete optimization problems exploiting P-systems. In Proceedings of 6th International Workshop on Membrane Computing, 26–43.

    Google Scholar 

  49. Nishida, T. 2006. Membrane algorithms. In Membrane Computing (WMC 2005), vol. 3850, ed. R. Freund, Gh. Păun, G. Rozenberg, and A. Salomaa, 55–66. Lecture Notes in Computer Science Berlin: Springer.

    Google Scholar 

  50. Nishida, T. 2006. Membrane algorithms: approximate algorithms for NP-complete optimization problems. In Applications of Membrane Computing, Chapter 11, ed. G. Ciobanu, Gh Păun, and M.J. Pérez-Jiménez, 303–314. Natural Computing Series Berlin: Springer.

    Google Scholar 

  51. Nishida, T. 2007. Membrane algorithm with brownian subalgorithm and genetic subalgorithm. International Journal of Foundations of Computer Science 18 (6): 1353–1360.

    Article  MathSciNet  MATH  Google Scholar 

  52. Nishida, T., T. Shiotani, and Y. Takahashi. 2008. Membrane algorithm solving job-shop scheduling problems. In Proceedings of the 9th International Workshop on Membrane Computing, 363–370.

    Google Scholar 

  53. Păun, G., G. Rozenberg, and A. Salomaa. 2010. The Oxford Handbook of Membrane Computing. New York: Oxford University Press.

    Book  MATH  Google Scholar 

  54. Peng, H., J. Shao, B. Li, J. Wang, M.J. Pérez-Jiménez, Y. Jiang, and Y. Yang. 2012. Image thresholding with cell-like P systems. In Proceedings of the Tenth Brainstorming Week on Membrane Computing, 75–87.

    Google Scholar 

  55. Peng, H., J. Wang, M.J. Pérez-Jiménez, and P. Shi. 2013. A novel image thresholding method based on membrane computing and fuzzy entropy. Journal of Intelligent and Fuzzy Systems 24 (2): 229–237.

    Google Scholar 

  56. Rao, R., V. Savsani, and D. Vakharia. 2011. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design 43 (3): 303–315.

    Article  Google Scholar 

  57. Robic, T., and B. Filipic. 2005. DEMO: differential evolution for multiobjective optimization. In Proceedings of 3rd International Conference on Evolutionary Multi-Criterion Optimization, 520–533.

    Google Scholar 

  58. Sun, Y., L. Zhang, and X. Gu. 2010. Membrane computing based particle swarm optimization algorithm and its application. In Proceedings of the 5th International Conference on Bio-Inspired Computing: Theories and Applications, 631–636.

    Google Scholar 

  59. Traveling salesman problems. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/.

  60. Vlachogiannis, J., and K. Lee. 2008. Quantum-inspired evolutionary algorithm for real and reactive power dispatch. IEEE Transactions on Power Systems 23 (4): 1627–1636.

    Article  Google Scholar 

  61. Wang, F., Y. Huang, M. Shi, and S. Wu. 2012. Membrane computing optimization method based on catalytic factor. In Advances in Brain Inspired Cognitive Systems (BICS 2012), vol. 7366, ed. H. Zhang, A. Hussain, D. Liu, and Z. Wang, 129–137. Lecture Notes in Artificial Intelligence Berlin: Springer.

    Chapter  Google Scholar 

  62. Wang, H., H. Peng, J. Shao, and T. Wang. 2012. A thresholding method based on P systems for image segmentation. ICIC Express Letters 6 (1): 221–227.

    Google Scholar 

  63. Wang, T., J. Wang, H. Peng, and M. Tu. 2012. Optimization of PID controller parameters based on PSOPS algorithm. ICIC Express Letters 6 (1): 273–280.

    Google Scholar 

  64. Wang, X., G. Zhang, J. Zhao, H. Rong, F. Ipate, and R. Lefticaru. 2015. A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. International Journal of Computers, Communications and Control 10 (5): 732–745.

    Article  Google Scholar 

  65. Xiao, J., X. Zhang, and J. Xu. 2012. A membrane evolutionary algorithm for DNA sequence design in DNA computing. Chinese Science Bulletin 57 (6): 698–706.

    Article  Google Scholar 

  66. Xiao, J., Y. Huang, and Z. Cheng. 2013. A bio-inspired algorithm based on membrane computing for engineering design problem. International Journal of Computer Science Issues 10 (1): 580–588.

    Google Scholar 

  67. Xiao, J., Y. Huang, Z. Cheng, J. He, and Y. Niu. 2014. A hybrid membrane evolutionary algorithm for solving constrained optimization problems. Optik 125 (2): 897–902.

    Article  Google Scholar 

  68. Xing, J., and H. Yang. 2012. An optimization algorithm based on evolution rules on cellular system. In Computational Intelligence and Intelligent Systems (ISICA 2012), vol. 316, ed. Z. Li, X. Li, Y. Liu, and Z. Cai, 314–320. Communications in Computer and Information Science Berlin: Springer.

    Chapter  Google Scholar 

  69. Yang, S., and N. Wang. 2012. A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model. International Journal of Hydrogen Energy 37 (10): 8465–8476.

    Article  Google Scholar 

  70. Yao, X., Y. Liu, and G.M. Lin. 1999. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3 (2): 82–101.

    Article  Google Scholar 

  71. Yıldız, A. 2009. An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. Journal of Materials Processing Technology 209: 2773–2780.

    Article  Google Scholar 

  72. Yin, X., L. Qiu, and H. Zhang. 2008. A distributed approach inspired by membrane computing for optimizing bijective S-boxes. In Proceedings of the 27th Chinese Control Conference, 60–64.

    Google Scholar 

  73. Zaharie, D., and G. Ciobanu. 2006. Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In Membrane Computing (WMC 7), vol. 4361, ed. H.J. Hoogeboom, Gh. Păun, G. Rozenberg, and A. Salomaa, 536–553. Lecture Notes in Computer Science Berlin: Springer.

    Google Scholar 

  74. Zavala, A., A. Aguirre, and E. Diharce. 2005. Constrained optimization via evolutionary particle swarm optimization algorithm (PESO). In Proceedings of the Genetic and Evolutionary Computation Conference, 209–216.

    Google Scholar 

  75. Zhang, R., and H. Gao. 2007. Improved quantum evolutionary algorithm for combinatorial optimization problem. In International Conference on Machine Learning and Cybernetics, 3501–3505.

    Google Scholar 

  76. Zhang, Y., and L. Huang. 2009. A variant of P systems for optimization. Neurocomputing 72 (4–6): 1355–1360.

    Article  Google Scholar 

  77. Zhang, J., and A. Sanderson. 2009. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation 13 (5): 945–958.

    Article  Google Scholar 

  78. Zhang, G., M. Gheorghe, and C. Wu. 2008. A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae 87 (1): 93–116.

    MathSciNet  MATH  Google Scholar 

  79. Zhang, G., C. Liu, M. Gheorghe, and F. Ipate. 2009. Solving satisfiability problems with membrane algorithm. In Proceedings of the 4th International Conference on Bio-Inspired Computing: Theories and Applications, 29–36.

    Google Scholar 

  80. Zhang, G., L. Hu, and W. Jin. 2010. Resemblance coefficient and a quantum genetic algorithm for feature selection. In Discovery Science (DS 2004), vol. 3245, ed. E. Suzuki, and S. Arikawa, 155–168. Lecture Notes in Artificial Intelligence Berlin: Springer.

    Chapter  Google Scholar 

  81. Zhang, G., Y. Li, and M. Gheorghe. 2010. A multi-objective membrane algorithm for knapsack problems. In Proceedings of the 5th International Conference on Bio-Inspired Computing: Theories and Applications, 604–609.

    Google Scholar 

  82. Zhang, G., C. Liu, and H. Rong. 2010. Analyzing radar emitter signals with membrane algorithms. Mathematical and Computer Modelling 52 (11–12): 1997–2010.

    Article  Google Scholar 

  83. Zhang, G., J. Cheng, and M. Gheorghe. 2011. A membrane-inspired approximate algorithm for traveling salesman problems. Romanian Journal of Information Science and Technology 14 (1): 3–19.

    Google Scholar 

  84. Zhang, G., M. Gheorghe, and Y. Li. 2012. A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Computing 11 (4): 701–717.

    Article  MathSciNet  MATH  Google Scholar 

  85. Zhang, G., F. Zhou, X. Huang, J. Cheng, M. Gheorghe, F. Ipate, and R. Lefticaru. 2012. A novel membrane algorithm based on particle swarm optimization for solving broadcasting problems. Chinese Journal of Electronics 13 (18): 1821–1841.

    MATH  Google Scholar 

  86. Zhang, G., J. Cheng, M. Gheorghe, and Q. Meng. 2013. A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing 13 (3): 1528–1542.

    Article  Google Scholar 

  87. Zhang, G., J. Cheng, and M. Gheorghe. 2014. Dynamic behavior analysis of membrane-inspired evolutionary algorithms. International Journal of Computers, Communications and Control 9 (2): 235–250.

    Article  Google Scholar 

  88. Zhang, G., M. Gheorghe, L. Pan, and M.J. Pérez-Jiménez. 2014. Evolutionary membrane computing: a comprehensive survey and new results. Information Sciences 279: 528–551.

    Article  Google Scholar 

  89. Zhang, G., H. Rong, J. Cheng, and Y. Qin. 2014. A population membrane system-inspired evolutionary algorithm for distribution network reconfiguration. Chinese Journal of Electronics 23 (3): 437–441.

    Google Scholar 

  90. Zhang, G., J. Cheng, M. Gheorghe, F. Ipate, and X. Wang. 2015. QEAM: an approximate algorithm using P systems with active membranes. International Journal of Computers, Communications and Control 10 (2): 263–279.

    Article  Google Scholar 

  91. Zhao, J., and N. Wang. 2011. Hybrid optimization method based on membrane computing. Industrial and Engineering Chemistry Research 50 (3): 1691–1704.

    Article  Google Scholar 

  92. Zhao, J., and N. Wang. 2011. A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling. Computers and Chemical Engineering 35 (2): 272–283.

    Article  Google Scholar 

  93. Zhao, J., N. Wang, and P. Zhou. 2012. Multiobjective bio-inspired algorithm based on membrane computing. In Proceedings of International Conference on Computer Science and Information Processing, 473–477.

    Google Scholar 

  94. Zhou, F., G. Zhang, H. Rong, M. Gheorghe, J. Cheng, F. Ipate, and R. Lefticaru. 2010. A particle swarm optimization based on P systems. In Proceedings of the 6th International Conference on Natural Computation, 3003–3007.

    Google Scholar 

  95. Zitzler, E., K. Deb, and L. Thiele. 2000. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8 (2): 173–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M. (2017). Membrane Algorithms. In: Real-life Applications with Membrane Computing. Emergence, Complexity and Computation, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-55989-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55989-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55987-2

  • Online ISBN: 978-3-319-55989-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics