Skip to main content

Significance of EGFR Expression in Circulating Tumor Cells

  • Chapter
  • First Online:
Isolation and Molecular Characterization of Circulating Tumor Cells

Abstract

This chapter focuses on a deep description of the epidermal growth factor receptor (EGFR) expression in circulating tumor cells (CTCs) and its main role in cancer progression, genetic changes related to metastasis , and resistance to treatment. The aberrant behavior of cancer cells is caused by genetic mutations and altered patterns of gene expression. These changes can be responsible for an increase in cell motility but also an ability of CTCs to survival in different microenvironments, as well as developing therapy-resistant clones. Finally, CTCs can acquire the ability to invade distant organs, where metastatic foci can develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89–103

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Ghiso JA, Liu D, Mignatti A et al (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12(4):863–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nature reviews. Cancer 14(9):623–631

    PubMed  Google Scholar 

  • Aparicio LA, Blanco M, Castosa R et al (2015) Clinical implications of epithelial cell plasticity in cancer progression. Cancer Lett 366(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Asworth T (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 14:146–149

    Google Scholar 

  • Baccelli I, Schneeweiss A, Riethdorf S et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    Article  CAS  PubMed  Google Scholar 

  • Brand TM, Iida M, Wheeler DL (2011) Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol Ther 11(9):777–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ZG, Wei JM, Qin CF et al (2012) Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells. Dig Dis Sci 57(5):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Cohen S (1983) The epidermal growth factor (EGF). Cancer 51:1787–1791

    Article  CAS  PubMed  Google Scholar 

  • De Luca A, Carotenuto A, Rachiglio A et al (2008) The role of the EGFR signaling in tumor microenvironment. J Cell Physiol 214(3):559–567

    Article  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews. Cancer 3(5):362–374

    CAS  PubMed  Google Scholar 

  • Garay C, Judge G, Lucarelli S et al (2015) Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell 26(19):3504–3519

    Article  PubMed  PubMed Central  Google Scholar 

  • Geho DH, Bandle RW, Clair T et al (2005) Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda, Md.) 20:194–200

    Article  CAS  Google Scholar 

  • Giltnane JM, Moeder CB, Camp RL et al (2009) Quantitative multiplexed analysis of ErbB family coexpression for primary breast cancer prognosis in a large retrospective cohort. Cancer 115(11):2400–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson CL, Morrow CJ, Li Y et al (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20(8):897–903

    Article  CAS  PubMed  Google Scholar 

  • Holz C, Niehr F, Boyko M et al (2011) Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother Oncol 101(1):158–164

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Kim SO, Jiang J et al (2003) Growth hormone-induced phosphorylation of epidermal growth factor (EGF) receptor in 3T3-F442A cells: modulation of EGF-induced trafficking and signaling. J Biol Chem 278(21):18902–18913

    Article  CAS  PubMed  Google Scholar 

  • Humtsoe JO, Kramer RH (2010) Differential epidermal growth factor receptor signaling regulates anchorage-independent growth by modulation of the PI3K/AKT pathway. Oncogene 29(8):1214–1226

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Jia Y, Subramanian KK et al (2008) Cancer cell-derived clusterin modulates the phosphatidylinositol 3′-kinase-Akt pathway through attenuation of insulin-like growth factor 1 during serum deprivation. Mol Cell Biol 28(13):4285–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedrin D, Wyckoff J, Boimel PJ et al (2009) ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res 15(11):3733–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin in Genet Dev 21(1):42–49

    Article  CAS  Google Scholar 

  • Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey S, Langhans SA (2015) Epidermal growth factor signaling in transformed cells. Int Rev Cell Mol Biol 314:1–41

    Article  PubMed  Google Scholar 

  • Lu Z, Jiang G, Blume-Jensen P et al (2001) Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21(12):4016–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Ghosh S, Wang Z et al (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of B-catenin, and enhanced tumor cell invasion. Cancer Cell 4(6):499–515

    Article  CAS  PubMed  Google Scholar 

  • Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17(12):3876–3883

    Article  CAS  PubMed  Google Scholar 

  • Minder P, Zajac E, Quigley JP (2015) EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 17(8):634–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantel K, Brakenhoffn RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456

    Article  CAS  PubMed  Google Scholar 

  • Pantel K, Speicher MR (2016) The biology of circulating tumor cells. Oncogene 35(10):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Panteleakou Z, Lembessis P, Sourla A et al (2009) Detection of circulating tumor cells in prostate cancer patients: methodological pitfalls and clinical relevance. Mol Med 15:101–114

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S et al (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta, Mol Cell Res 1813(9):1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan AC, Adam AP, Zhang L et al (2006) Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5(7):729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano MJ, Ortega FG, Alvarez-Cubero MJ et al (2014) EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget 5(17):7486–7497

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen X, Kramer RH (2004) Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165(4):1315–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleijfer S, Gratama JW, Sieuwerts AM et al (2007) Circulating tumour cell detection on its way to routine diagnostic implementation? Eur J Cancer 43(18):2645–2650

    Article  CAS  PubMed  Google Scholar 

  • Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno NT, Zhang D (2011) Targeting EGFR in triple negative breast cancer. J Cancer 2(1):324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Toom EE, Verdone JE, Gorin MA et al (2016) Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 7(38):62754–62766

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Stoecklein NH, Lin PP et al (2016) Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget. doi:10.18632/oncotarget.12242

    Google Scholar 

  • Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65(10):1566–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yang Z, Lu N (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes Migr 9(4):317–324

    Article  CAS  Google Scholar 

  • Xue C, Wyckoff J, Liang F et al (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66(1):192–197

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wyckoff J, Liang F et al (2013) AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Dev 8(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo JH, Zhu W, Li MY et al (2011) Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem 112(9):2508–2517

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Serrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Serrano, M.J. et al. (2017). Significance of EGFR Expression in Circulating Tumor Cells. In: Magbanua, M., Park, J. (eds) Isolation and Molecular Characterization of Circulating Tumor Cells. Advances in Experimental Medicine and Biology, vol 994. Springer, Cham. https://doi.org/10.1007/978-3-319-55947-6_16

Download citation

Publish with us

Policies and ethics