Skip to main content

Observer Tools for Pipeline Monitoring

  • Chapter
  • First Online:
Modeling and Monitoring of Pipelines and Networks

Part of the book series: Applied Condition Monitoring ((ACM,volume 7))

  • 1057 Accesses

Abstract

This chapter discusses how the problem of fault monitoring in pipelines can be addressed by state observer tools. In short, the approach relies on a dynamical modeling of water flow dynamics in the pipeline subject to fault effects, and on this basis fault parameters are directly estimated by observer techniques. Motivated by typical pipeline models and faults, possible observer tools are recalled and illustrated with some application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Begovich, O., Pizano, A., & Besançon, G. (2012). Online implementation of a leak isolation algorithm in a plastic pipeline prototype. Latin American Applied Research, 57, 131–141.

    Google Scholar 

  • Besançon, G. (2007). Nonlinear observers and applications. Berlin: Springer.

    Google Scholar 

  • Besançon, G., & Å¢iclea, A. (2007). An immersion-based observer design for rank-observable nonlinear systems. IEEE Transaction on Automatic Control, 52(1), 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Besançon, G., Georges, D., Begovich, O., Verde, C., & Aldana, C. (2007). Direct observer design for leak detection and estimation in pipelines. In European Control Conference, Kos, Greece.

    Google Scholar 

  • Besançon, G., Rubio-Scola, I., Guillen, M., Dulhoste, J., Santos, R., & Georges, D. (2013). Observer-based detection and location of partial blockages in pipelines. In Internantional Conference on Control and Fault Tolerant Systems, Nice, France.

    Google Scholar 

  • Chaudhry, M. H. (1979). Applied hydraulic transients. New York: Van Nostrand Reinhold Co.

    Google Scholar 

  • Delgado-Aguiñaga, J., Besançon, G., & Begovich, O. (2015). Leak isolation based on extended Kalman filter in a plastic pipeline under temperature variations with real-data validation. In Proceedings of IEEE Mediterranean Control Conference, Torremolinos, Spain.

    Google Scholar 

  • Delgado-Aguiñaga, J., Begovich, O., & Besançon, G. (2016a). Exact-differentiation-based leak detection and isolation in a plastic pipeline under temperature variations. Journal of Process Control, 42, 114–124.

    Article  Google Scholar 

  • Delgado-Aguiñaga, J., Besançon, G., Begovich, O., & Carvajal, J. (2016b). Multi-leak diagnosis in pipelines based on extended Kalman filter. Control Engineering Practice, 49, 139–148.

    Article  Google Scholar 

  • Gauthier, J., & Bornard, G. (1981). Observability for any u(t) of a class of nonlinear systems. IEEE Transaction on Automatic Control, 26(5), 922–926.

    Article  MathSciNet  MATH  Google Scholar 

  • Gauthier, J. P., Hammouri, H., & Othman, S. (1992). A simple observer for nonlinear systems: Applications to bioreactors. IEEE Transactions on Automatic Control, 37(6), 875–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelb, A. (1974). Applied optimal estimation. Technical report, M.I.T.

    Google Scholar 

  • GuillĂ©n, M. (2016). Sistema de detecciĂ³n y localizaciĂ³n de fallas en tuberĂ­as basado en observadores de estado. PhD. thesis, Universidad de Los Andes.

    Google Scholar 

  • GuillĂ©n, M., Dulhoste, J., Besançon, G., Rubio-Scola, I., Santos, R., & Georges, D. (2014). Leak detection and location based on improved pipe model and nonlinear observer. In Proceedings of 13th European Control Conference, Strasbourg, France.

    Google Scholar 

  • Hauge, E., Aamo, O., & Godhavn, J. (2007). Model-based pipeline monitoring with leak detection. In Proceedings of 7th IFAC symposium on nonlinear control systems, Pretoria, South Africa.

    Google Scholar 

  • Kalman, R., & Bucy, R. S. (1960). New results in linear filtering and prediction theory. Journal of Basic Engineering, 82(D), 35–40.

    Google Scholar 

  • Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34(3), 379–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger, D. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8, 74–80.

    Article  Google Scholar 

  • Moreno, J., & Osorio, M. (2008). A Lyapunov approach to second-order sliding mode controllers and observers. In Proceedings of 47th IEEE Conference on Decision and Control, Cancun, Mexico.

    Google Scholar 

  • Navarro, A., Begovich, O., Sanchez-Torres, J., & Besançon, G. (2017). Real-time leak isolation based on state estimation with fitting loss coefficient calibration in a plastic pipeline. Asian Journal of Control, 19, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubio-Scola, I. (2015). Contributions Ă  l observation par commande d observabilitĂ© et Ă  la surveillance de pipelines par observateurs. PhD. thesis, UniversitĂ© de Grenoble.

    Google Scholar 

  • Rubio-Scola, I., Besançon, G., & Georges, D. (2013). Input optimization for observability of state affine systems. In 5th IFAC symposium systems structure and control, Grenoble, France.

    Google Scholar 

  • Torres, L. (2011). Modèles et observateurs pour systèmes d Ă©coulement sous pression - extension aux systèmes chaotiques. PhD. thesis, UniversitĂ© de Grenoble.

    Google Scholar 

  • Torres, L., Besançon, G., & Georges, D. (2009). Multi-leak estimator for pipelines based on an orthogonal collocation model. In Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China.

    Google Scholar 

  • Torres, L., Besançon, G., & Georges, D. (2012). EKF-like observer with stability for a class of triangular nonlinear systems. IEEE Transactions on Automatic Control, 57(6), 1570–74.

    Article  MathSciNet  Google Scholar 

  • Torres, L., Besançon, G., Navarro, A., Begovich, O., & Georges, D. (2011). Examples of pipeline monitoring with nonlinear observers and real-data validation. In 8th International IEEE MultiConference on Systems, Signals and Devices, Sousse, Tunisia.

    Google Scholar 

  • Torres, L., Verde, C., Besançon, G., & GonzĂ¡lez, O. (2014). High gain observers for leak detection in subterranean pipelines of liquefied petroleum gas. International Journal of Robust and Nonlinear Control, 24(6), 1127–1141.

    Article  MathSciNet  MATH  Google Scholar 

  • Verde, C. (2004). Minimal order nonlinear observer for leak detection. ASME J Dynamic Systems, Measurement and Control, 126(3), 467–472.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Drs. Delgado, Guillén, Rubio Scola, Navarro, for their contributions in the field via their recent PHD studies, Dr. Begovich and Prof. Verde for early collaborations on this topic, Dr. Torres for first—and continuous—significant developments in that respect, Prof. Georges, Prof. Dulhoste and Prof. Santos for fruitful interactions in the collaborations formerly mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gildas Besançon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Besançon, G. (2017). Observer Tools for Pipeline Monitoring. In: Verde, C., Torres, L. (eds) Modeling and Monitoring of Pipelines and Networks. Applied Condition Monitoring, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-55944-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55944-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55943-8

  • Online ISBN: 978-3-319-55944-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics