Skip to main content

Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines

  • Chapter
  • First Online:
Modeling and Monitoring of Pipelines and Networks

Part of the book series: Applied Condition Monitoring ((ACM,volume 7))

Abstract

The chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model . In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow process. The starting point of the study is determined by the partial differential equations obtained from the momentum and mass conservation laws by using physical principles. A realizable computational model is developed by approximation of the principal equations using the finite difference method. This model is expressed in terms of the recombination matrix A which is the key of the analysis by taking into account its possible singularity and stability . The nonsingularity of the matrix A for nonzero and finite, time and spatial steps is proven by the Lower–Upper decomposition. A feature of the discrete model allows the derivation of a nonsingular aggregated model, whose stability can be analyzed. By considering the Courant–Friedrichs–Lewy condition and data from experimental studies, numerical stability conditions are derived and limitations for the feasible discretized grid are obtained. Moreover, the optimal relationship between the time and space steps which ensures a maximum stability margin is derived. Because the inverse of matrix A, composed of four tridiagonal matrices, is required for the main diagnosis methods, two analytical methods for the inversion are discussed which reduce the system’s initialization time and allow designing an accurate and fast diagnosis algorithm. By considering that each inversion method generates its particular structure, two different flow models are generated: one based on auxiliary variables and the other suitable if the stability condition of A is satisfied. The applicability of the two models is shown by considering the norm of the difference between their behaviors for a finer discretization grid . A similarity measure is proposed which considers the number of pipeline segments as well as the ratio between the time and spatial steps . Thus, the system’s computational efficiency is improved and satisfactory results are shown with respect to the base model, if a highly dimensional model with the approximated diagonal matrix is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belsito, S., Lombardi, P., Andreussi, P., & Banerjee, S. (1998). Leak detection in liquefied gas pipelines by artificial neural networks. AIChE, 44(12), 2675–2688.

    Article  Google Scholar 

  • Billmann, L., & Isermann, R. (1987). Leak detection methods for pipelines. Automatica, 23(3), 381–385.

    Article  MATH  Google Scholar 

  • Brogan, W. (1991). Modern control theory. Boston: Prentice Hall.

    MATH  Google Scholar 

  • Da Fonseca, C., & Petronilho, J. (2001). Explicit inverses of some tridiagonal matrices. Linear Algebra and its Applications, 325, 7–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Dick, M. (2012). Stabilization of the gas flow in networks: Boundary feedback stabilization of quasilinear hyperbolic systems on networks. Ph.D. thesis. Erlangen-Nürnberg: Friedrich-Alexander-Universität.

    Google Scholar 

  • Gunawickrama, K. (2001). Leak detection methods for transmission pipelines. Ph.D. thesis. Gdańsk: Gdańsk Univeristy of Technology.

    Google Scholar 

  • Hooke, R., & Jeeves, T. A. (1961). Direct search solution of numerical and statistical problems. Journal of the Association for Cumputing Machinery, 8(2), 212–229.

    Article  MATH  Google Scholar 

  • Kowalczuk, Z., & Gunawickrama, K. (1998). Detection of leakages in industry pipelines using a cross-correlation approach. Pomiary Automatyka Kontrola, 44(4), 140–146.

    Google Scholar 

  • Kowalczuk, Z., & Gunawickrama, K. (2004). Detecting and locating leaks in transmission pipelines. In J. Korbicz, J. M. Koœcielny, Z. Kowalczuk, & W. Cholewa (Eds.), Fault Diagnosis. Models, Artificial Intelligence, Applications, chapter 21 (pp. 821–864). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kowalczuk, Z. & Tatara, M. (2013). Analytical modeling of flow processes: Analysis of computability of a state-space model. In XI International Conference on Diagnostics of Processes and Systems (pp. 74.1–12). £agów, Lubuski.

    Google Scholar 

  • Kowalczuk, Z. & Tatara, M. (2016). Approximate models and parameter analysis of the flow process in transmission pipelines. In Z. Kowalczuk (Ed.), Advanced and Intelligent Computations in Diagnosis and Control. Advances in Intelligent Systems and Computing (Vol. AISC 386, pp. 209–220). Cham, Heidelberg, New York, Dordrecht, London: Springer. doi:10.1007/978-3-319-23180-8_17

  • Kreyszig, E. (2006). Advanced engineering mathematics (Vol. 9). Columbus: John Wiley and Sons Inc.

    MATH  Google Scholar 

  • MathWorks. (2012). MATLAB and Curve Fitting Toolbox Release 2012b. Matlab, Natick, Massachusetts, United States: Technical Report.

    Google Scholar 

  • Reddy, H., Narasimhan, S., Bhallamudi, S. M., & Bairagi, S. (2011). Leak detection in gas pipeline networks using an efficient state estimator. Part-I: Theory and simulations. Computers and Chemical Engineering, 35(4), 651–661.

    Article  Google Scholar 

  • Strikwerda, J. (2007). Finite difference schemes and partial differential equations. SIAM.

    Google Scholar 

  • Torres, L., Besançon, G., & Verde, C. (2012). Leak detection using parameter identification. In 8th IFAC symposium SAFEPROCESS-2012. Mexico City, Mexico.

    Google Scholar 

  • Verde, C., & Torres, L. (2015). Referenced model based observers for locating leaks in a branched pipeline. In 9th International Federation of Automatic Control (IFAC) Symposium SAFEPROCESS (pp. 1066–1071). Paris: IFAC.

    Google Scholar 

  • Walpole, R., Myers, R., Myers, S., & Ye, K. (2012). Probability and statistics for engineers and scientists (9th ed.). Boston: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Kowalczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kowalczuk, Z., Tatara, M. (2017). Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines. In: Verde, C., Torres, L. (eds) Modeling and Monitoring of Pipelines and Networks. Applied Condition Monitoring, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-55944-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55944-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55943-8

  • Online ISBN: 978-3-319-55944-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics