Skip to main content

A Bi-level Mixed Integer Programming Model to Solve the Multi-Servicing Facility Location Problem, Minimising Negative Impacts Due to an Existing Semi-Obnoxious Facility

  • Conference paper
  • First Online:
Data and Decision Sciences in Action

Abstract

We propose a bi-level multi-objective model to solve the multi-facility location problem with traffic equilibrium constraints. The main facility location problem within our proposed model consists of locating a set of buildings with varying sensitivity thresholds due to the negative impacts propagating from an existing semi-obnoxious facility. The traffic routing problem is modelled as a user equilibrium which is embedded using its Karush-Kuhn-Tucker optimality conditions. We use the convex scalarisation approach to deal with multiple objectives. Two solution methods are then contrasted: in the first method we solve our linearised model using an off-the shelf Mixed Integer Programming solver. In the second solution approach we use Benders Decomposition algorithm to improve computational tractability. Numerical results highlight the superiority of the decomposition approach when solving a realistic-sized instance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Springer Science & Business Media (2013)

    Google Scholar 

  2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962). doi: 10.1007/BF01386316

  3. Berman, O., Wang, Q.: Locating semi-obnoxious facilities with expropriation: minisum criterion. J. Oper. Res. Soc. 58, 378–390 (2007)

    Article  MATH  Google Scholar 

  4. Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44 (1973). doi:10.1287/opre.21.1.37

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrizosa, E., Conde, E.: A fractional model for locating semi-desirable facilities on networks. Eur. J. Oper. Res. 136, 67–80 (2002). doi:10.1016/S0377-2217(01)00030-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Church, R., Velle, C.R.: The maximal covering location problem. Pap. Reg. Sci. 32, 101–118 (1974). doi:10.1111/j.1435-5597.1974.tb00902.x

    Article  Google Scholar 

  7. Contreras, I., Fernández, E., Reinelt, G.: Minimizing the maximum travel time in a combined model of facility location and network design. Omega, Spec. Issue Forecast. Manag. Sci. 40, 847–860 (2012). doi:10.1016/j.omega.2012.01.006

    Google Scholar 

  8. Dempe, S.: Foundations of Bilevel Programming. Springer Science & Business Media (2002)

    Google Scholar 

  9. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems. In: Presented at the 16th Annual Symposium on Foundations of Computer Science, 1975, pp. 184–193 (1975). doi: 10.1109/SFCS.1975.21

  10. Gutjahr, W.J., Dzubur, N.: Bi-objective bilevel optimization of distribution center locations considering user equilibria. Trans. Res. Part E Logist. Trans. Rev. 85, 1–22 (2016). doi:10.1016/j.tre.2015.11.001

    Article  Google Scholar 

  11. Kalvelagen, E.: Two Stage Stochastic Linear Programming with GAMS. Amsterdam Optimization Modeling Group LLC, Washington DC (2003)

    Google Scholar 

  12. Matisziw, T.C., Murray, A.T.: Siting a facility in continuous space to maximize coverage of a region. Socioecon. Plan. Sci. The contributions of Charles S. Revelle 43, 131–139 (2009). doi:10.1016/j.seps.2008.02.009

    Article  Google Scholar 

  13. Melachrinoudis, E., Xanthopulos, Z.: Semi-obnoxious single facility location in Euclidean space. Comput. Oper. Res. 30, 2191–2209 (2003). doi:10.1016/S0305-0548(02)00140-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Murawski, L., Church, R.L.: Improving accessibility to rural health services: The maximal covering network improvement problem. Socioecon. Plann. Sci. The contributions of Charles S. Revelle 43, 102–110 (2009). doi:10.1016/j.seps.2008.02.012

    Article  Google Scholar 

  15. Ohsawa, Y.: Bicriteria Euclidean location associated with maximin and minimax criteria. Nav. Res. Logist. NRL 47, 581–592 (2000). doi:10.1002/1520-6750(200010)47:7<581:AID-NAV3>3.0.CO;2-R

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohsawa, Y., Plastria, F., Tamura, K.: Euclidean push–pull partial covering problems. Comput. Oper. Res. Part Special Issue: Recent Algorithmic Advances for Arc Routing Problems 33, 3566–3582 (2006). doi:10.1016/j.cor.2005.03.034

    Article  MathSciNet  MATH  Google Scholar 

  17. Ohsawa, Y., Tamura, K.: Efficient location for a semi-obnoxious facility. Ann. Oper. Res. 123, 173–188 (2003). doi:10.1023/A:1026127430341

    Article  MathSciNet  MATH  Google Scholar 

  18. Plastria, F., Gordillo, J., Carrizosa, E.: Locating a semi-obnoxious covering facility with repelling polygonal regions. Discret. Appl. Math. 161, 2604–2623 (2013). doi:10.1016/j.dam.2013.05.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods. Prentice-Hall (1984)

    Google Scholar 

  20. Skriver, A.J.V., Andersen, K.A.: The bicriterion semi-obnoxious location (BSL) problem solved by an ϵ-approximation. Eur. J. Oper. Res. 146, 517–528 (2003). doi:10.1016/S0377-2217(02)00271-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, H., Gao, Z., Wu, J.: A bi-level programming model and solution algorithm for the location of logistics distribution centers. Appl. Math. Model. 32, 610–616 (2008). doi:10.1016/j.apm.2007.02.007

    Article  MathSciNet  MATH  Google Scholar 

  22. WebTrak|Airservices [WWW Document]. http://www.airservicesaustralia.com/aircraftnoise/webtrak/ (2016). Accessed 5 June 16

  23. Yapicioglu, H., Smith, A.E., Dozier, G.: Solving the semi-desirable facility location problem using bi-objective particle swarm. Eur. J. Oper. Res. 177, 733–749 (2007). doi:10.1016/j.ejor.2005.11.020

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed W.A. Hammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Hammad, A.W., Rey, D., Akbarnezhad, A. (2018). A Bi-level Mixed Integer Programming Model to Solve the Multi-Servicing Facility Location Problem, Minimising Negative Impacts Due to an Existing Semi-Obnoxious Facility. In: Sarker, R., Abbass, H., Dunstall, S., Kilby, P., Davis, R., Young, L. (eds) Data and Decision Sciences in Action. Lecture Notes in Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55914-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55914-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55913-1

  • Online ISBN: 978-3-319-55914-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics