Skip to main content

A Cryptographic View of Regularity Lemmas: Simpler Unified Proofs and Refined Bounds

  • Conference paper
  • First Online:
Book cover Theory and Applications of Models of Computation (TAMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10185))

  • 810 Accesses

Abstract

In this work we present a short and unified proof for the Strong and Weak Regularity Lemma, based on the cryptographic technique called low-complexity approximations. In short, both problems reduce to a task of finding constructively an approximation for a certain target function under a class of distinguishers (test functions), where distinguishers are combinations of simple rectangle-indicators. In our case these approximations can be learned by a simple iterative procedure, which yields a unified and simple proof, achieving for any graph with density d and any approximation parameter \(\epsilon \) the partition size

  • a tower of 2’s of height \(O\left( d_{}\epsilon ^{-2} \right) \) for a variant of Strong Regularity

  • a power of 2 with exponent \(O\left( d\epsilon ^{-2} \right) \) for Weak Regularity

The novelty in our proof is: (a) a simple approach which yields both strong and weaker variant, and (b) improvements when \(d=o(1)\). At an abstract level, our proof can be seen a refinement and simplification of the “analytic” proof given by Lovasz and Szegedy.

This paper (with updates) is available on https://eprint.iacr.org/2016/965.pdf

M. Skórski—Supported by the European Research Council Consolidator Grant (682815-TOCNe).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The requirement of being “sufficiently big” is to make this notion equivalent with the irregularity above.

  2. 2.

    Worse bounds were known before for example [Gow97].

  3. 3.

    The original work [LS07] proves a bound being \(O(\epsilon ^{-2})\) iterations of the function \(s(1)=1\), \(s(k+1)=2^{s(1)^4\ldots s(k)^4}\) starting at 1. It is easy to see that s(k) can be bounded by a tower of height \(k+O(1)\).

  4. 4.

    The generated partition arises as intersections of the generating sets with their complements.

  5. 5.

    If we consider the mapping \(h\rightarrow \max _{f} \left| \underset{e\leftarrow {\mathcal {X}}}{{{\mathrm{{\mathbb {E}}}}}} g(e)f(e) - \underset{e\leftarrow {\mathcal {X}}}{{{\mathrm{{\mathbb {E}}}}}} h(e)f(e)\right| \) then its subgradient equals f for some \(f\in {\mathcal {F}}\). Then the update is \(h:= h-t\cdot f\) precisely as in the proof of Sect. 2.1.

  6. 6.

    The relaxed form we use is except that we allow any numbers \(d_{i,j}\) in place of densities \(d_G(V_i,V_j)\).

  7. 7.

    This property was also implicitly used in [LS07].

References

  1. Duke, R.A., Lefmann, H., Rdl, V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24(3), 598–620 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Frieze, A., Kannan, R.: A simple algorithm for constructing szemeredi’s regularity partition. Electron. J. Comb. [electronic only] 6(1), Research paper R17, 7 p. (eng) (1999)

    Google Scholar 

  3. Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fox, J., Lovász, L.M.: A tight lower bound for szemerédi’s regularity lemma. CoRR abs/1403.1768 (2014)

    Google Scholar 

  5. Gowers, W.T.: Lower bounds of tower type for szemerédi’s uniformity lemma. Geom. Funct. Anal. GAFA 7(2), 322–337 (1997)

    Article  MATH  Google Scholar 

  6. Hajnal, A., Maass, W., Turán, G.: On the communication complexity of graph properties. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, New York, pp. 186–191. ACM (1988)

    Google Scholar 

  7. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_24

    Chapter  Google Scholar 

  8. Kohayakawa, Y., Rdl, V.: Szemeredi’s regularity lemma and quasi-randomness (2002)

    Google Scholar 

  9. Komls, J., Simonovits, M.: Szemeredi’s regularity lemma and its applications in graph theory (1996)

    Google Scholar 

  10. Lovász, L., Szegedy, B.: Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17(1), 252–270 (2007). MR MR2306658 (2008a:05129)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rdl, V., Schacht, M.: Regularity lemmas for graphs

    Google Scholar 

  12. Szemeredi, E.: On sets of integers containing no k elements in arithmetic progression (1975)

    Google Scholar 

  13. Trevisan, L., Tulsiani, M., Vadhan, S.: Regularity, boosting, and efficiently simulating every high-entropy distribution. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Washington, DC, USA, pp. 126–136. IEEE Computer Society (2009)

    Google Scholar 

  14. Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryptography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 93–110. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Skórski .

Editor information

Editors and Affiliations

A Proof of Lemma 2

A Proof of Lemma 2

Proof

Let d be the edge density of the pair (TS) and \(d'\) be the edge density of the pair \((T',S')\). Denote \(\epsilon = \mathrm {irreg}_{G}(T,S)\). For any two subsets \(T'' \subset T', S''\subset S'\), which are also subsets of T and S respectively, by the definition of d we have

$$\begin{aligned} \left| \frac{E(T',S')}{|T'||S'|} - d\right| \leqslant \epsilon . \end{aligned}$$

which translates to

$$\begin{aligned} |d'-d| \leqslant \epsilon . \end{aligned}$$
(19)

Therefore, by Eq. (19) and the triangle inequality

$$\begin{aligned} \left| E(T'',S'') - d'\cdot |T''||S''|\right|&\leqslant \left| E(T'',S'') - d\cdot |T''||S''|\right| + \epsilon \cdot |T''||S''|. \end{aligned}$$
(20)

Since the definition of d applied to \(T''\subset T, S''\subset S\) implies

$$\begin{aligned}\left| E(T'',S'') - d'\cdot |T''||S''|\right| \leqslant \epsilon \cdot |T''||S''|, \end{aligned}$$

from Eq. (20) we conclude that

$$\begin{aligned} \left| E(T'',S'') - d'\cdot |T''||S''|\right|&\leqslant 2 \epsilon \cdot |T''||S''|, \end{aligned}$$

which finishes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Skórski, M. (2017). A Cryptographic View of Regularity Lemmas: Simpler Unified Proofs and Refined Bounds. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55911-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55910-0

  • Online ISBN: 978-3-319-55911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics