Skip to main content

Bounds for Semi-disjoint Bilinear Forms in a Unit-Cost Computational Model

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10185))

  • 780 Accesses

Abstract

We study the complexity of the so called semi-disjoint bilinear forms over different semi-rings, in particular the n-dimensional vector convolution and \(n\times n\) matrix product. We consider a powerful unit-cost computational model over the ring of integers allowing for several additional operations and generation of large integers. We show the following dichotomy for such a powerful model: while almost all arithmetic semi-disjoint bilinear forms have the same asymptotic time complexity as that yielded by naive algorithms, matrix multiplication, the so called distance matrix product, and vector convolution can be solved in a linear number of steps. It follows in particular that in order to obtain a non-trivial lower bounds for these three basic problems one has to assume restrictions on the set of allowed operations and/or the size of used integers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company, Reading (1974)

    MATH  Google Scholar 

  2. Alon, N., Galil, Z., Margalit, O.: On the exponent of all pairs shortest path problem. J. Comput. Syst. Sci. 54, 25–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Patrascu, M., Taslakian, P.: Necklaces, convolutions and X+Y. Algorithmica 69, 294–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fisher, M.J., Paterson, M.S.: String-matching and other products. In: Proceedings of the 7th SIAM-AMS Complexity of Computation, pp. 113–125 (1974)

    Google Scholar 

  6. Freivalds, R.: Probabilistic machines can use less running time. In: Proceedings of the IFIP Congress, pp. 839–842 (1977)

    Google Scholar 

  7. Hartmanis, J., Simon, J.: On the power of multiplication in random access machines. In: Proceedings of the SWAT (FOCS), pp. 13–23 (1974)

    Google Scholar 

  8. Korec, I., Wiedermann, J.: Deterministic verification of integer matrix multiplication in quadratic time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 375–382. Springer, Cham (2014). doi:10.1007/978-3-319-04298-5_33

    Chapter  Google Scholar 

  9. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303 (2014)

    Google Scholar 

  10. Mehlhorn, K., Galil, Z.: Monotone switching circuits and boolean matrix product. Computing 16, 99–111 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pratt, R.: The power of negative thinking in multiplying boolean matrices. SIAM J. Comput. 4(3), 326–330 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raz, R.: On the complexity of matrix product. In: Proceedings of the STOC, pp. 144–151 (2002)

    Google Scholar 

  13. Romani, F.: Shortest path problem is not harder than matrix multiplications. Inf. Process. Lett. 4(6), 134–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnorr, C.-P.: A lower bound on the number of additions in monotone computations. Theoret. Comput. Sci. 2(3), 305–315 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schönhage, A.: On the power of random access machines. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 520–529. Springer, Heidelberg (1979). doi:10.1007/3-540-09510-1_42

    Chapter  Google Scholar 

  16. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science, New York, Stuggart (1987)

    MATH  Google Scholar 

  18. Wiedermann, J.: Fast nondeterministic matrix multiplication via derandomization of freivalds’ algorithm. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 123–135. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7_11

    Google Scholar 

  19. Yuval, G.: An algorithm for finding all shortest paths using \(N^{2.81}\) infinite-precision multiplication. Inf. Process. Lett. 11(3), 155–156 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vassilevska Williams, V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 887–898 (2012)

    Google Scholar 

  21. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49(3), 289–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Christos Levcopoulos for valuable comments. This research has been supported in part by Swedish Research Council grant 621-2011-6179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Lingas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lingas, A., Persson, M., Sledneu, D. (2017). Bounds for Semi-disjoint Bilinear Forms in a Unit-Cost Computational Model. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55911-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55910-0

  • Online ISBN: 978-3-319-55911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics