Skip to main content

Counting Minimal Dominating Sets

  • Conference paper
  • First Online:
  • 884 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10185))

Abstract

A dominating set D in a graph is a subset of its vertex set such that each vertex is either in D or has a neighbour in D. From [M.M. Kanté, V. Limouzy, A. Mary and L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, SIDMA 28(4):1916–1929 (2014)] we know that the counting (resp. enumeration) of (inclusions-wise) minimal dominating sets is equivalent to the counting (resp. enumeration) of (inclusion-wise) minimal transversals in hypergraphs. The existence of an output-polynomial time algorithm for the enumeration of minimal dominating sets in graphs is open for a while, but by now for several graph classes it was shown that there is indeed an output-polynomial time algorithm. Since whenever we can count, we can enumerate in output-polynomial time, it is interesting to know for which graph classes one can count the set of minimal dominating sets in polynomial time (it is known that the problem is already \(\#P\)-complete in general graphs). In this manuscript we show that for many known graph classes with an output-polynomial time algorithm for the enumeration of minimal dominating sets, the counting version is \(\#P\)-complete, and for some of them a sub-exponential lower bound is also given (under \(\#\)ETH).

M.M. Kanté—Supported by French Agency for Research under the GraphEN project (ANR-15-CE-0009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berge, C.: Graphs. North-Holland Mathematical Library, vol. 6. North-Holland Publishing Co., Amsterdam (1985). Second revised edition of part 1 of the 1973 English version

    MATH  Google Scholar 

  2. Cochefert, M., Couturier, J.-F., Gaspers, S., Kratsch, D.: Faster algorithms to enumerate hypergraph transversals. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 306–318. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49529-2_23

    Chapter  Google Scholar 

  3. Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discrete Appl. Math. 157(12), 2675–2700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Curticapean, R.: Block interpolation: a framework for tight exponential-time counting complexity. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 380–392. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_31

    Chapter  Google Scholar 

  6. Dagum, P., Luby, M.: Approximating the permanent of graphs with large factors. Theor. Comput. Sci. 102(2), 283–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Durand, A., Hermann, M.: On the counting complexity of propositional circumscription. Inf. Process. Lett. 106(4), 164–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discrete Appl. Math. 156(11), 2035–2049 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Sæther, S.H., Villanger, Y.: Output-polynomial enumeration on graphs of bounded (local) linear MIM-width. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 248–258. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_22

    Chapter  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  13. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discrete Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham (2015). doi:10.1007/978-3-319-21840-3_37

    Chapter  Google Scholar 

  15. Kijima, S., Okamoto, Y., Uno, T.: Dominating set counting in graph classes. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 13–24. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22685-4_2

    Chapter  Google Scholar 

  16. Kotek, T., Preen, J., Simon, F., Tittmann, P., Trinks. M.: Recurrence relations and splitting formulas for the domination polynomial. Electron. J. Comb. 19(3), 27 (2012). Paper 47

    Google Scholar 

  17. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9(3), 558–565 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer, C.: Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.)

    Google Scholar 

  19. Scott Provan, J., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circ. Syst. 36(9), 1230–1234 (1989)

    Article  MathSciNet  Google Scholar 

  21. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Moustapha Kanté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kanté, M.M., Uno, T. (2017). Counting Minimal Dominating Sets. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55911-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55910-0

  • Online ISBN: 978-3-319-55911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics