Skip to main content

The Unique Haemoglobin System of Migratory Pleuragramma antarctica: Correlation of Haematological and Biochemical Adaptations with Mode of Life

  • Chapter
  • First Online:
The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem

Part of the book series: Advances in Polar Ecology ((AVPE,volume 3))

Abstract

In the Southern Ocean the suborder Notothenioidei is dominant. Most notothenioids are benthic and sedentary; we have studied haemoglobin structure/function in search of correlations with mode of life and evolution.

In the Antarctic shelf Pleuragramma antarctica (0–900 m) is dominant in abundance and biomass. It has circum-Antarctic distribution, and is the only fully pelagic notothenioid. Being the best example of notothenioid adaptation to pelagic habitats, P. antarctica calls for studies on adaptive strategies.

In notothenioids, evolution has developed blood adaptations, such as reduction of erythrocyte number and haemoglobin concentration/multiplicity, reaching the extreme of eliminating haemoglobin in Channichthyidae. Species of the red-blooded families generally only have one haemoglobin (95–99% of the total). In contrast, P. antarctica has three major haemoglobins. As this species performs seasonal migrations through water masses that may have different and fluctuating temperatures, during evolution it developed adaptations suitable to allow optimal energy savings during the oxygenation-deoxygenation cycle, producing haemoglobins displaying wide differences in thermodynamic behaviour. The expression of multiple genes, typical of juveniles, remains high also in the adult stage. This oxygen-transport system is remarkably unique and appears designed to fit an unusual mode of life through refined adaptation strategies.

In the phylogenetic trees, the αa chain of P. antarctica haemoglobins falls into the clade of major Antarctic haemoglobins; the same applies to the βa chains. The αb chain is in a basal position with respect to the clade of Antarctic minor Hbs; the same applies to the βb chain. All this appears congruent with the phylogenetic evidence.

Population dynamics and ecophysiological adaptations of P. antarctica are worth investigating to identify strategies of resilience to current climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini C, Patarnello T, Ashford JR et al (2015) Genetic differentiation in the ice dependent fish Pleuragramma antarctica along the Antarctic Peninsula. J Biogeogr. doi:10.1111/jbi.12497

    Google Scholar 

  • Andersen NC (1984) Genera and subfamilies of the family Nototheniidae from the Antarctic and sub-Antarctic. Steenstrupia 10:1–3

    Google Scholar 

  • Ashford J, Zane L, Torres JJ et al (2017) Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi:10.1007/978-3-319-55893-6_10

  • Bargelloni L, Marcato S, Zane L et al (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129

    Article  CAS  Google Scholar 

  • Benedetti M, Giuliani ME, Regoli F (2017) Pro-oxidant challenges and antioxidant adaptation of Pleuragramma antarctica in platelet ice. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi:10.1007/978-3-319-55893-6_4

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–48l

    CAS  Google Scholar 

  • Caruso C, Rutigliano B, Romano M et al (1991) The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochim Biophys Acta 1078:273–282

    Article  CAS  Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK et al (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci U S A 92:1817–1821

    Article  CAS  Google Scholar 

  • D’Avino R, di Prisco G (1989) Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. – 1. Purification and characterisation. Eur J Biochem 179:699–705

    Article  Google Scholar 

  • D’Avino R, Fago A, Kunzmann A et al (1992) The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. Polar Biol 12:135–140

    Article  Google Scholar 

  • D’Avino R, Caruso C, Tamburrini M et al (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681

    Google Scholar 

  • Dettaї A, Berkani M, Lautredou A-C et al (2012) Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Mar Genomics 8:49–58

    Article  Google Scholar 

  • DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology vol 1. Academic, London, pp 305–314

    Google Scholar 

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • di Prisco G (1988) A study of hemoglobin in Antarctic fishes: purification and characterization of hemoglobins from four species. In: di Prisco G, Maresca B, Tota B (eds) Proceedings of the international conference on marine biology of Antarctica, Ravello, 1986. Comparative biochemistry and physiology vol 90B, pp 631–637

    Google Scholar 

  • di Prisco G, D’Avino R (1989) Molecular adaptation of the blood of Antarctic teleosts to environmental conditions. Antarct Sci 1:119–124

    Article  Google Scholar 

  • di Prisco G, Tamburrini M (1992) The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp Biochem Physiol B 102:661–671

    Article  Google Scholar 

  • di Prisco G, Verde C (2015) The Ross Sea and its rich life: research on molecular adaptive evolution of stenothermal and eurythermal Antarctic organisms and the Italian contribution. Hydrobiologia 761:335–361

    Article  Google Scholar 

  • di Prisco G, D’Avino R, Camardella L et al (1990) Structure and function of hemoglobin in Antarctic fishes and evolutionary implications. Polar Biol 10:269–274

    Article  Google Scholar 

  • di Prisco G, D’Avino R, Caruso C et al (1991a) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 263–281

    Chapter  Google Scholar 

  • di Prisco G, Maresca B, Tota B (eds) (1991b) Biology of Antarctic fish. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • di Prisco G, Cocca E, Parker SK et al (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    Article  Google Scholar 

  • di Prisco G, Eastman JT, Giordano D et al (2007) Biogeography and adaptation of notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Ekau W (1988) Ökomorphologie nototheniider Fische aus dem Weddellmeer, Antarktis. Ber Polarforsch 51:1–140

    Google Scholar 

  • Eschmeyer WN (ed) (2014) Catalog of fishes: genera, species, references. Electronic version. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

  • Evans CW, De Vries AL (2017) Coping with ice: freeze avoidance in the Antarctic silverfish (Pleuragramma antarctica) from egg to adult. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi:10.1007/978-3-319-55893-6_2

  • Everson I, Ralph R (1968) Blood analyses of some Antarctic fish. Bull Br Antarct Surv 15:59–62

    Google Scholar 

  • Gerasimchuk VV (1986) Characteristics of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), from Olaf-Pruds Bay (Commonwealth Sea, eastern Antarctica) with notes on the identification of the species. J Ichthyol 26:10–17

    Google Scholar 

  • Giordano D, Grassi L, Parisi E et al (2006) Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biol 30:75–82

    Article  Google Scholar 

  • Grigg GC (1967) Some respiratory properties of the blood of four species of Antarctic fishes. Comp Biochem Physiol 23:139–148

    Article  CAS  Google Scholar 

  • Hellmer HH, Bersch M (1985) The Southern Ocean. Rep Polar Res 26:1–115

    Google Scholar 

  • Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236

    Article  Google Scholar 

  • Hubold G (1985) On the early life history of the high-Antarctic silverfish Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Proceedings of the 4th SCAR symposium on Antarctic biology, Antarctic nutrient cycles and food webs. Springer, Berlin, pp 445–451

    Chapter  Google Scholar 

  • Hubold G (1991) Ecology of notothenioid fish in the Weddell Sea. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Hureau JC, Petit D, Fine JM et al (1977) New cytological, biochemical, and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf Publ, Houston, pp 459–477

    Google Scholar 

  • Ito N, Komiyama NH, Fermi G (1995) Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the root effect by comparison of the liganded and unliganded haemoglobin structures. J Mol Biol 250:648–658

    Article  CAS  Google Scholar 

  • Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res Ser E 36:1–69

    Google Scholar 

  • Johnston IA (1989) Antarctic fish muscles. Structure, function and physiology. Antarct Sci 1:97–108

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150e163

    Article  Google Scholar 

  • Kunzmann A (1990) Gill morphometrics of two Antarctic fish species: Pleuragramma antarcticum and Notothenia gibberifrons. Polar Biol 11:9–18

    Article  Google Scholar 

  • Kunzmann A (1991) Blood physiology and ecological consequences in Weddell Sea fishes (Antarctica). Ber Polarforsch 91:1–79

    Google Scholar 

  • Kunzmann A, Fago A, D’Avino R et al (1992) Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. Polar Biol 12:141–145

    Article  Google Scholar 

  • La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266

    Article  Google Scholar 

  • La Mesa M, Catalano B, Russo A et al (2010) Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarct Sci 22:243–254

    Article  Google Scholar 

  • Lancraft TM, Reisenbichler KR, Robinson BH et al (2004) A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish predation. Deep-Sea Res II 51:2247–2260

    Article  Google Scholar 

  • Love RM (1980) The chemical biology of fishes, vol 2, Advances 1968-77. Academic, London

    Google Scholar 

  • Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of Antarctic fishes. Adv Mar Biol 24:321–388

    Article  Google Scholar 

  • Mathews AJ, Rohlfs RJ, Olson JS et al (1989) The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin. J Biol Chem 264:16573–16583

    CAS  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587

    Article  CAS  Google Scholar 

  • Mintenbeck K, Torres JJ (2017) Impact of climate change on the Antarctic silverfish and its consequences for the Antarctic ecosystem. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi:10.1007/978-3-319-55893-6_12

  • Mylvaganam SE, Bonaventura C, Bonaventura J et al (1996) Structural basis for the Root effect in haemoglobin. Nat Struct Biol 3:275–228

    Article  CAS  Google Scholar 

  • Nagai K, Luisi B, Shi D et al (1987) Distal residues in the oxygen binding site of haemoglobin studied by protein engineering. Nature 329:858–860

    Article  CAS  Google Scholar 

  • Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299:421–426

    Article  CAS  Google Scholar 

  • Powers DA (1980) Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Am Zool 20:139–162

    Article  CAS  Google Scholar 

  • Riccio A, Tamburrini M, Carratore V et al (2000) Functionally distinct hemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J Fish Biol 57:20–32

    Article  CAS  Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61:427–456

    Article  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Article  CAS  Google Scholar 

  • Somero GN (1990) Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Am Zool 30:123–135

    Article  Google Scholar 

  • Tamburrini M, di Prisco G (2000) Oxygen-transport system and mode of life in Antarctic fish. In: di Prisco G, Giardina B, Weber RE (eds) Hemoglobin function in vertebrates. Molecular adaptation in extreme and temperate environments. Springer Italia, Milano/Berlin, pp 51–59

    Google Scholar 

  • Tamburrini M, D’Avino R, Fago A et al (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785

    Article  CAS  Google Scholar 

  • Tamburrini M, D’Avino R, Carratore V et al (1997) The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptation with life style. Comp Biochem Physiol 118A(4):1037–1044

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Val AL, Almeida-Val VMF, Affonso EG (1990) Adaptive features of Amazonian fishes: hemoglobins, hematology, intraerythrocytic phosphates and whole blood Bohr effect of Pterygolichthys multiradiatus (Siluriformes). Comp Biochem Physiol 97B:435–444

    CAS  Google Scholar 

  • Verde C, Carratore V, Riccio A et al (2002) The functionally distinct hemoglobins of the Arctic spotted wolfish Anarhichas minor. J Biol Chem 277:36312–36320

    Article  CAS  Google Scholar 

  • Verde C, Balestrieri M, de Pascale D et al (2006) The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. J Biol Chem 281:22073–22084

    Article  CAS  Google Scholar 

  • Verde C, Giordano D, Russo R et al (2012) The adaptive evolution of polar fishes: lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments – the impacts of global change on biodiversity, Series “from pole to pole”, vol 1. Springer, Heidelberg, pp 197–213

    Chapter  Google Scholar 

  • Wells RMSG, Ashby MD, Duncan SJ et al (1980) Comparative studies of the erythrocytes and hemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527

    Article  Google Scholar 

  • Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Prog Ser I 151:205–218

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Italian National Programme for Antarctic Research (PNRA). The project falls within the framework of the SCAR programme “Antarctic Thresholds - Ecosystem Resilience and Adaptation” (AnT-ERA). This chapter is dedicated to the memory of John A Macdonald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido di Prisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

di Prisco, G., Verde, C. (2017). The Unique Haemoglobin System of Migratory Pleuragramma antarctica: Correlation of Haematological and Biochemical Adaptations with Mode of Life. In: Vacchi, M., Pisano, E., Ghigliotti, L. (eds) The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem. Advances in Polar Ecology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-55893-6_3

Download citation

Publish with us

Policies and ethics