Skip to main content

Ancient Feeding Ecology and Niche Differentiation of Pleistocene Horses

  • Chapter
  • First Online:
Fossil Horses of South America

Part of the book series: The Latin American Studies Book Series ((LASBS))

  • 612 Accesses

Abstract

Carbon isotopes provide key data for understanding the ecology of extinct horses during the Plio-Pleistocene in South America. Hippidion and Equus had very different diets. This flexibility in their diet and by extension in their occupied biome is in agreement with hypothesis that generalists and open biome specialists from North America experienced a successful radiation throughout South America. The autopodial elements are better predictors of body mass in horses. Evolutionary history of horses was strongly influenced by environmental conditions and kind of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberdi MT, Ruiz Bustos A (1989) Taxonomía y biostratigrafía de Equidae (Mammalia, Perissodactyla) en la cuenca de Guadix-Baza (Granada). Trab Neóg-Cuater 11:239–270

    Google Scholar 

  • Alberdi MT, Caloi L, Palombo MR (1988) The Quaternary fauna of Venosa: equids. Bull Mus Anthrop Préhist Monaco 31:5–39

    Google Scholar 

  • Alberdi MT, Prado JL, Ortiz Jaureguizar E (1995) Patterns of body size changes in fossil and living Equini (Perissodactyla). Biol J Linn Soc 54:349–370

    Google Scholar 

  • Ambrose SH, DeNiro MJ (1986) The isotopic ecology of East African mammals. Oecologia 69:395–406

    Article  Google Scholar 

  • Andrade JL, de la Barrera E, Reyes-García C, Ricalde MF, Vargas-Soto G, Cervera CJ (2007) El metabolismo acido de las crasulaceas: diversidad, fisiología ambiental y productividad. Bol Soc Bot Mexico 87:37–50

    Google Scholar 

  • Bocherens HP, Hoch L, Mariotti A, Geraads D, Jaeger JJ (1996) Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306–318

    Google Scholar 

  • Bœuf O (1986) L’Equidé du site Villafranchien de Chilhac (Haute-Loire, France). Ann Paléont Vert 72:29–67

    Google Scholar 

  • Brown JH (1995) The composition of biotas: patterns of body size, abundance, and energetic. In: Brown JH (ed) Macroecology. University of Chicago Press, Chicago, pp 76–101

    Google Scholar 

  • Bryant JD, Froelich PN (1995) A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta 59:4523–4537

    Article  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  Google Scholar 

  • Castillo R, Morales P, Ramos S (1985) El oxígeno-18 en las aguas meteóricas de México. Rev Mexicana Fís 31:637–647

    Google Scholar 

  • Cerling TE, Harris MJ (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363

    Article  Google Scholar 

  • Cerling TE, Harris MJ, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the miocene/pliocene boundary. Nature 389:153–158

    Article  Google Scholar 

  • Cope ED (1887) The origin of the filtest. D Appleton & Co, New York

    Google Scholar 

  • Damuth J, MacFadden BJ (1990) Body Size in Mammalian Paleobiology. In: John Damuth, Bruce J. MacFadden (eds) ISBN 0521360994. Cambridge University Press, Cambridge, UK, November pp 409

    Google Scholar 

  • Damuth J, Janis C (2005) Paleoecological inferences using tooth wear rates, hypsodonty and life history in ungulates. Vertebr Paleontol 25(suppl):49A

    Google Scholar 

  • Dansgaars W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dive J, Eisenmann V (1991) Identification and discrimination of first phalanges from Pleistocene and Modern “Equus”, Wild and Domestic. In: Meadow RH, Uerpmann HP (eds) Equids in the Ancient World. Beihefte Zum Tübinger Atlas Des Vorderen Orients 19(2):278–333

    Google Scholar 

  • Domingo L, Prado JL, Alberdi MT (2012) The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat Sci Rev 55:103–113

    Article  Google Scholar 

  • Drucker DG, Bridault A, Hobson KA, Szuma E, Bocherens H (2008) Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr Palaeoclimat Palaeoecol 266(1):69–82

    Article  Google Scholar 

  • Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. PNAS USA 107(6):2532–2537

    Article  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Eisenmann V (1979) Les métapodes d’Equus sensu lato (Mammalia, Perissodactyla). Geobios 12:863–886

    Article  Google Scholar 

  • Eisenmann V (1980) Caractères spécifiques et problèmes taxonomiques relatifs a certains Hipparions africains. In: Proceedings of the 8th Panafrican congress of Prehistory and quaternary studies, pp 76–81

    Google Scholar 

  • Eisenmann V (1981) Analyses multidimensionnelles des cranes d’Equides actuels: Methodes et resultats. In: Table Ronde MNHN Mai 1981, Paris, pp 21–22

    Google Scholar 

  • Eisenmann V, Beckouche S (1986) Identification and discrimination of metapodials from Pleistocene and Modern Equus wild and domestic. In: Meadows RH, Uerpmann HP (eds) Equids in the Ancien World, Wiesbaden. Beihefte zum Tübinger Atlas des Vorderen Orients 19(1):117–163

    Google Scholar 

  • Eisenmann V, Alberdi MT, De Giuli C, Staesche U (1988) Studying fossil horses, vol 1. EJ Brill, Leiden, p 72

    Google Scholar 

  • Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81

    Article  Google Scholar 

  • Feranec RS, MacFadden BJ (2006) Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32(2):191–205

    Article  Google Scholar 

  • Fleagle JG (1978) Size distribution of living and fossil primate faunas. Paleobiology 4:67–76

    Article  Google Scholar 

  • Fleagle JG (1988) Primate adaptation and evolution. Academic Press Inc., San Diego

    Google Scholar 

  • Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion–attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novitatis 3301:1–36

    Article  Google Scholar 

  • Gambaryan PP (1974) How mammals run. Anatomical adaptation. Halsted Press, Wiley

    Google Scholar 

  • Garzione CN, Hoke G, Libarkin JC, Withers S, MacFadden B, Eiler J et al (2008) Rise of the andes. Science 320:1304–1307

    Article  Google Scholar 

  • Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311(5760):511–515

    Article  Google Scholar 

  • Gingerich PD, Smith BH (1984) Allometric scaling in the dentition of primates and insectivores. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 257–273

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112(7):1091–1105

    Article  Google Scholar 

  • Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on stomach structure and feeding habits of East Africa ruminants. Mammalia 36:226–240

    Article  Google Scholar 

  • Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Missouri Bot Garden 93(2):297–325

    Article  Google Scholar 

  • Hulbert RC (1984) Paleoecology and population dynamics of the Early Miocene (Hemingfordian) Horse “Parahippus leonensis” from the Thomas Site, Florida. J Vert Paleont 4(4):547–558

    Article  Google Scholar 

  • Hylander WL (1985) Mandibular function and biomechanical stress and scaling. Am Zool 25:315–330

    Article  Google Scholar 

  • Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals and the correlation of these factors with dietary preferences. In: Russel DE, Santorio JP, Signogneu-Russel D (eds) Teeth Revisited, Proceedings of the VII International Symposium on Dental Morphology. Mus Nat Hist Nat, Mem 53:367–387

    Google Scholar 

  • Janis CM (1990) Correlation of cranial and dental variables with body size in ungulates and macropodids. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, pp 255–299

    Google Scholar 

  • Janis CM (2007) The horse series. In: Regal B (ed) Icons of evolution, Greenwood Press, Westport, CT, pp 257–280

    Google Scholar 

  • Jungers WL (1988) Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bidedalism. J Hum Evol 17:247–265

    Article  Google Scholar 

  • Kahlke RD, Kaiser TM (2011) Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus hundsheimensis (Rhinocerotidae, Mammalia). Quat Sci Rev 30(17):2250–2261

    Article  Google Scholar 

  • Kaiser TM, Franz-Odendaal TA (2004) A mixed-feeding Equus species from the Middle Pleistocene of South Africa. Quat Res 62:316–323

    Article  Google Scholar 

  • Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell Publishing, Boston, pp 99–154

    Chapter  Google Scholar 

  • Koch PL, Fogel ML, Tuross N (1994) Tracing the diets of fossil animals using stable isotopes. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific, pp 63–92

    Google Scholar 

  • Koch PL, Hoppe KA, Webb SD (1998) The isotopic ecology of late Pleistocene mammals in North America: part 1. Florida. Chem Geol 152:119–138

    Article  Google Scholar 

  • Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829

    Article  Google Scholar 

  • Kohn MJ, Schoeninger MJ, Valley JW (1996) Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim Cosmochim Acta 60(20):3889–3896

    Article  Google Scholar 

  • Lee-Thorp JL, Van Der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. South Afr J Sci 83(11):712–715

    Google Scholar 

  • Macdonald DW (1984) The encyclopedia of Mammals. Equinox, Oxford

    Google Scholar 

  • MacFadden BJ (1986) Fossil horses from “Eohippus” (Hyracotherium) to “Equus”: scaling cope’s law, and the evolution of body size. Paleobiology 12(4):355–369

    Article  Google Scholar 

  • MacFadden BJ (1992) Fossil horses. Systematics, paleobiology, and evolution of the family equidae. Cambridge University Press, New York

    Google Scholar 

  • MacFadden BJ (2005) Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat Res 64:113–124

    Article  Google Scholar 

  • MacFadden BJ, Cerling TE (1996) Mammalian herbivore communities, ancient feeding ecology and carbon isotopes: a 10 million year sequence from the Neogene of Florida. J Vert Paleont 16:103–115

    Article  Google Scholar 

  • MacFadden BJ, Hulbert RC Jr (1990) Body size estimate and size distribution of Ungulate mammals from the late Miocene Love Bone Bed of Florida. In: MacFadden BJ, Damuth J (eds) Estemation and biological implications, body size in mammalian paleobiology, Cambridge University Press, pp 337–364

    Google Scholar 

  • MacFadden BJ, Wang Y, Cerling TE, Anaya F (1994) South American Fossil Mammals and Carbon Isotopes: A 25 Million-Year sequence from the Bolivian Andes. Palaeogeogr Palaeoclimat Palaeoecol 107(3/4):257–268

    Google Scholar 

  • MacFadden BJ, Shockey BJ (1997) Ancient Feeding Ecology and niche differentiation of Pleistocene Mammalian herbivores from Tarija, Bolivia: Morphological and isotopes evidence. Paleobiology 23(1):77–100

    Article  Google Scholar 

  • MacFadden BJ, Cerling TE, Harris JM, Prado JL (1999) Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horses. Glob Ecol Biogeogr 8:137–149

    Article  Google Scholar 

  • MacFadden BJ, Higgins P, Clementz MT, Jones DS (2004) Diets, habitat preferences, and niche differentiation of Cenozoic sirenians from Florida: evidence from stable isotopes. Paleobiology 30(2):297–324

    Article  Google Scholar 

  • Marin-Leyva AH, DeMiguel D, Garcia-Zepeda ML, Ponce-Saavedra J, Arroyo-Cabrales J, Schaaf P, Alberdi MT (2016) Diet adaptability of Late Pleistocene Equus from West Central Mexico. Palaeogeogr Palaeoclimat Palaeoecol 441:748–757

    Article  Google Scholar 

  • Matheus PE (1995) Diet and co-ecology of Pleistocene short-faced-bears and brown bears in eastern Beringia. Quat Res 44:447–453

    Article  Google Scholar 

  • McInerney FA, Atrömberg CAE, White JWC (2011) The Neogene transition from C3 to C4 grassland in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology 37:23–49

    Article  Google Scholar 

  • Medrano H, Flexas J (2000) Fotorrespiración y mecanismos de concentración del dióxido de carbón. In: Azcón-Bieto J, Talón M (eds) Fundamentos de Fisiología Vegetal, McGraw-Hill Interamericana, Barcelona, pp 187–201

    Google Scholar 

  • Mihlbachler MC, Rivals F, Solounias N, Semperbon GM (2011) Dietary change and evolution of horses in North America. Science 331:1178–1181

    Article  Google Scholar 

  • Mook W (2002) Introduction to isotope hydrology: stable and radioactive isotopes of hydrogen, oxygen and carbon. International Association of Hydrogeologists, Taylor and Francis

    Google Scholar 

  • Moreno Bofarull A, Arias Royo A, Hernández Fernández M, Ortiz-Jaureguizar E, Morales J (2008) Influence of continental history on the ecological specialization and macroevolutionary processes in the mammalian assemblage of South America: differences between small and large mammals. BMC Evol Biol 8. doi:10.1186/1471-2148-8-97

  • Peters RH, Wassenberg K (1983) The effect of body size on animal abundance. Oecologia 60(1):89–96

    Article  Google Scholar 

  • Pérez-Crespo VA, Sánchez-Chillón B, Arroyo-Cabrales J, Alberdi MT, Polaco OJ et al (2009) La dieta y el hábitat del mamut y los caballos del Pleistoceno tardío de El Cedral con base en isótopos estables (δ13C, δ18O). Rev Mex Cienc Geol 26(2):347–355

    Google Scholar 

  • Prado JL, Sánchez B, Alberdi MT (2011) Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. BMC Ecol 11:1–15

    Article  Google Scholar 

  • Quade J, Cerling TE, Andrews P, Alpagut B (1995) Paleodietary reconstruction of Miocene faunas from Paşalar, Turkey using stable carbon and oxygen isotopes of fossil tooth enamel. J Hum Evol 28(4):373–384

    Article  Google Scholar 

  • Quade J, Garzione C, Eiler J (2007) Paleoelevation reconstruction using pedogenic carbonates. ‎Rev Mineral Geoch 66(1):53–87

    Google Scholar 

  • Rivals F, Julien MA, Kuitems M, van Kolfschoten T, Serangeli J, Drucker DG et al (2015) Investigation of equid paleodiet from Schöningen 13 II-4 through dental wear and isotopic analyses: archaeological implications. J Hum Evol. doi:10.1016/j.jhevol.2014.04.002

    Google Scholar 

  • Rowley DB, Garzione CN (2007) Stable isotope-based paleoaltimetry. Annu Rev Earth Planet Sci 35:463–508

    Article  Google Scholar 

  • Saarinen J, Eronen J, Fortelius M, Seppä H, Lister AM (2016) Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeont Electr 19(3):1–58

    Google Scholar 

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 Plant biology, physiological ecology series. Academic Press, pp 313–373

    Google Scholar 

  • Sánchez B (2005) Reconstrucción del ambiente de mamíferos extintos a partir del análisis isotópico de los restos esqueléticos. In: Alcorno P, Redondo R, Toledo J (eds) Nuevas Técnicas Aplicadas al Estudio de los Sistemas Ambientales: Los Isótopos Estables. Universidad Autónoma de Madrid, España, pp 49–64

    Google Scholar 

  • Sánchez Chillón B, Alberdi MT, Leone G, Bonadonna FP, Stenni B, Longinelli A (1994) Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeogr Palaeoclimat Palaeoecol 107(3/4):317–328

    Article  Google Scholar 

  • Sánchez B, Prado JL, Alberdi MT (2004) Feeding ecology, dispersal, and extinction of South American Pleistocene Gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30(1):146–161

    Article  Google Scholar 

  • Schoeninger MJ, Kohn M, Valley JW (2000) Tooth oxygen isotopes ratios as paleoclimate monitors in arid ecosystems. In: Ambrose SH, Katzemberg MA (eds) Biogeochemical approaches to paleodietary analysis. Kluwer Academic/Plenum Publisher, New York, pp 117–140

    Google Scholar 

  • Scott KM (1990) Postcranial dimensions of ungulates as predictors of body mass. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, pp 301–335

    Google Scholar 

  • Shackleton NJ (1984) Oxygen isotope evidence for cenozoic climate change. In: Brenchley (ed) Fossils and climate. Cambridge University Press, Cambridge, pp 301–335

    Google Scholar 

  • Shackleton NJ, Hall MA (1984) Oxygen and carbon isotope stratigraphy of deep sea drilling project hole 552A: plio-pleistocene glacial history. Init Rep Deep Sea Drilling Proj 71:599–612

    Google Scholar 

  • Shoemaker L, Clauset A (2014) Body mass evolution and diversification within horses (family Equidae). Ecol lett 17(2):211–220

    Article  Google Scholar 

  • Sponheimer M, Lee-Throp JA (1999) Isotopic evidence for the diet of an Early Hominid, Australopithecus africanus. Science 283:368–370

    Article  Google Scholar 

  • Stanley SM (1973) An explanation for Cope’s rule. Evolution 27(1):1–36

    Article  Google Scholar 

  • Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains during the late Eocene to early Miocene. Palaeogeogr Palaeoclimat Palaeoecol 207(3-4):239–275

    Article  Google Scholar 

  • Summerhayes CP (1986) Sea level curves based on seismic stratigraphy: their chronostratigraphic significance. In: Shackleton NJ (ed) Boundaries and events in the Paleogene, Palaeogeogr Palaeoclimat Palaeoecol 37:27–42

    Google Scholar 

  • Ungar PS, Brown CA, Bergstrom TS, Walker A (2003) Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25(4):185–193

    Article  Google Scholar 

  • Vail PR, Mitchum RMJr, Thompson SI (1977) Seismic stratigraphy and global change of sea level. Part4: global cycles and relative changes of sea level. In: Payton CE (ed) Seismic stratigraphy application to hydrocarbon exploration, Am Assoc Petrol Geol Mem 26:83–97

    Google Scholar 

  • Van Valkenburgh B, Wang X, Damuth J (2004) Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306:101–104

    Article  Google Scholar 

  • Vrba ES (1992) Mammals as key to evolutionary theory. J Mammal 73:1–28

    Article  Google Scholar 

  • Walker EP (1983) Mammals of the world, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201:908–910

    Article  Google Scholar 

  • Winans MC (1989) A quantitative study of North American fossil species of the genus Equus. In: Prothero RD, Schoch RM (eds) The evolution of Perissodactyls, Oxford Monographs on Geology and Geophysics 15:262–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Prado .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prado, J.L., Alberdi, M.T. (2017). Ancient Feeding Ecology and Niche Differentiation of Pleistocene Horses. In: Fossil Horses of South America. The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-55877-6_6

Download citation

Publish with us

Policies and ethics