Skip to main content

Add on. The Bondon: A New Theory of Electron Effective Coupling and Density Ensembles

  • Chapter
  • First Online:
Structural Chemistry
  • 1732 Accesses

Abstract

Bondonic chemistry promotes the modeling of chemical transformations by quantum particles of the chemical field, the so-called bondons, rather than by molecular wave function. From the bondonic side, the quantum computational information, mainly regarding the bonding energy, but also with the topology of the molecular architecture, is projected on the length radii or action, bondonic mass and gravitational effects, all without eigen-equations in “classical” quantum mechanics, although being of observable nature, here discussed and compared for their realization and predictions. As a boson and responsible for chemical bonding, i.e. electronic aggregating in a stable structure (despite the inter-electronic repulsion) the gravitational side of the bondons is also manifested, and accordingly here reviewed and applied on paradigmatic chemical compounds. Being a particle of quantum (chemical) interaction, the bondon is necessarily a boson, and emerges from chemical field by a spontaneous symmetry breaking mechanism, following the Goldstone mechanism yet featuring the Higgs bosonic mass rising caring the electronic pair information by a bondon-antibondon (Feynman) coupling, eventually corresponding to the bonding-antibonding chemical realms of a given bonding. The present mechanism of bondonic mass is applied for describing the Stone-Wales topological defects on graphene , a 2D carbon material allowing electrons to unidirectionally interact in bosonic-bondonic formation; in this framework, the molecular topology as well as combined molecular topology-chemical reactivity approaches are unfolded showing that bondons fulfill quantum entangled behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Araki Y (2011) Chiral symmetry breaking in monolayer graphene by strong coupling expansion of compact and non-compact U(l) lattice gauge theories. Ann Phys 326:1408–1424

    Article  CAS  Google Scholar 

  • Bader RFW (1990) Atoms in Molecules: a Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  • Bader RFW (1994) Principle of stationary action and the definition of a proper open system. Phys Rev B 49:13348–13356

    Article  CAS  Google Scholar 

  • Bader RFW (1998a) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  • Bader RFW (1998b) Why are there atoms in chemistry? Canadian J Chem 76:973–988

    Article  CAS  Google Scholar 

  • Bader RFW, Austen MA (1997) Properties of atoms in molecules: atoms under pressure. J Chem Phys 107:4271–4285

    Article  CAS  Google Scholar 

  • Bader RFW, Gillespie RJ, MacDougall PJ (1988) A physical basis for the VSEPR model of molecular geometry. J Am Chem Soc 110:7329–7336

    Article  CAS  Google Scholar 

  • Bader RFW, Hernández-Trujillo J, Cortés-Guzmán F (2007) Chemical bonding: from Lewis to atoms in molecules. J Comput Chem 28:4–14

    Article  CAS  Google Scholar 

  • Batterman R (2002) The devil in the details: asymptotic reasoning in explanation, reduction, and emergence. Oxford University Press, Oxford

    Google Scholar 

  • Batterman R (2011) Emergence, singularities, and symmetry breaking. Found Phys 41:1031–1050

    Article  Google Scholar 

  • Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  • Bohm D, Vigier JP (1954) Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys Rev 96:208–216

    Article  Google Scholar 

  • Cavaliere F, De Giovannini U (2010) General Hartree-Fock method and symmetry breaking in quantum dots. Phys E 42:606–609

    Article  CAS  Google Scholar 

  • Chung SG (2006) Spontaneous symmetry breaking in Josephson junction arrays. Phys Lett A 355:394–398

    Article  CAS  Google Scholar 

  • de Broglie L, Vigier MJP (1953) La physique quantique restera-t-elle indéterministe?. Gauthier-Villars, Paris

    Google Scholar 

  • Egger R, Hausler W, Mak CH, Grabert H (1999) Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys Rev Lett 82:3320–3323

    Article  CAS  Google Scholar 

  • Energy Units Converter (2014) http://www.colby.edu/chemistry/PChem/Hartree.html

  • Fukutome H (1981) Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions. Int J Quantum Chem 20:955–1065

    Article  CAS  Google Scholar 

  • Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  • Ghosal A, Guclu AD, Umrigar CJ, Ullmo D, Baranger HU (2006) Correlation-induced inhomogeneity in circular quantum dots. Nat Phys 2:336–340

    Article  CAS  Google Scholar 

  • Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry. Oxford University Press, New York

    Google Scholar 

  • Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 34:1185–1189

    Article  Google Scholar 

  • Hammes-Schiffer S, Andersen HC (1993) The advantages of the general Hartree-Fock method for future computer simulation of materials. J Chem Phys 99:1901–1913

    Article  CAS  Google Scholar 

  • Heitler W, London F (1927) Wechselwirkung neutraler atome und homöopolare bindung nach der quantenmechanik. Z Phys 44:455–472

    Article  CAS  Google Scholar 

  • Hoffmann R (2008) All the ways to have a bond. University of Richmond, Powell Lectures Series

    Google Scholar 

  • HyperChem (2002) 7.01 [Program Package]; Hypercube, Inc. Gainesville, FL, USA

    Google Scholar 

  • Iranmanesh A, Ashrafi AR, Graovac A, Cataldo F, Ori O (2012) Wiener index role in topological modeling of hexagonal systems-from fullerenes to graphene. In: Gutman I, Furtula B (eds) Distance in molecular graphs-applications. Mathematical chemistry monographs series, vol 13. University of Kragujevac. Kragujevac, Serbia, pp 135–155

    Google Scholar 

  • Jalbout AF, Ortiz YP, Seligman TH (2013) Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets. Chem Phys Lett 564:69–72

    Article  CAS  Google Scholar 

  • Jensen F (2007) Introduction to Computational Chemistry. Wiley, Chichester

    Google Scholar 

  • Kalliakos S, Rontani M, Pellegrini V, Garcia CP, Pinczuk A, Goldoni G, Molinari E, Pfeiffer LN, West KW (2008) A molecular state of correlated electrons in a quantum dot. Nat Phys 4:467–471

    Article  CAS  Google Scholar 

  • Lackner KS, Zweig G (1983) Introduction to the chemistry of fractionally charged atoms: electronegativity. Phys Rev D 28:1671–1691

    Article  CAS  Google Scholar 

  • Langmuir I (1919a) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41:868–934

    Article  CAS  Google Scholar 

  • Langmuir I (1919b) Isomorphism, isosterism and covalence. J Am Chem Soc 41:1543–1559

    Article  CAS  Google Scholar 

  • Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  • Linnett JW (1961) A modification of the Lewis-Langmuir octet rule. J Am Chem Soc 83:2643–2653

    Article  CAS  Google Scholar 

  • Malrieu JP, Guihéry N, Jiménez-Calzado C, Angeli C (2007) Bond electron pair: its relevance and analysis from the quantum chemistry point of view. J Comput Chem 28:35–50

    Article  CAS  Google Scholar 

  • Martin J-L, Migus A, Mourou GA, Zewail AH (eds) (1993) Ultrafast Phenomena VIII. Springer, Berlin

    Google Scholar 

  • Nakamura Y, Yu P, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398:786–788

    Article  CAS  Google Scholar 

  • Ori O, Cataldo F, Putz MV (2016) Topological anisotropy of stone-wales waves in graphenic fragments. Int J Mol Sci 12(11):7934-7949

    Google Scholar 

  • Parr RG, Bartolotti LJ (1982) On the geometric mean principle of electronegativity equalization. J Am Chem Soc 104:3801–3803

    Article  CAS  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Pauling L (1939) The nature of the chemical bond and the structure of molecules and crystals. Cornell University Press, Ithaca

    Google Scholar 

  • Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim.

    Google Scholar 

  • Physical Units Transformations (2013) [http://users.mccammon.ucsd.edu/~blu/Research-Handbook/physical-constant.html]

  • Primas H (1981) Chemistry quantum mechanics and reductionism. Springer, Berlin

    Book  Google Scholar 

  • Putz MV (2003) Contributions within density functional theory with applications to chemical reactivity theory and electronegativity. Dissertation.com, Parkland

    Google Scholar 

  • Putz MV (2005) Markovian approach of the electron localization functions. Int J Quantum Chem 105:1–11

    Article  CAS  Google Scholar 

  • Putz MV (2007) Semiclassical electronegativity and chemical hardness. Comp Theor Chem 6:33–47

    Article  CAS  Google Scholar 

  • Putz MV (2008a) Absolute and chemical electronegativity and hardness. NOVA Science Publishers, New York

    Google Scholar 

  • Putz MV (2008b) The chemical bond: spontaneous symmetry-breaking approach. Symmetry Cult Sci 19:249–262

    Google Scholar 

  • Putz MV (2009a) Electronegativity: quantum observable. Int J Quantum Chem 109:733–738

    Article  CAS  Google Scholar 

  • Putz MV (2009b) Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems. Int J Mol Sci 10:4816–4940

    Article  CAS  Google Scholar 

  • Putz MV (2010a) The bondons: the quantum particles of the chemical bond. Int J Mol Sci 11:4227–4256

    Article  CAS  Google Scholar 

  • Putz MV (2010b) Beyond quantum nonlocality: chemical bonding field. Int J Environ Sci 1:25–31

    Google Scholar 

  • Putz MV (2011a) Quantum parabolic effects of electronegativity and chemical hardness on carbon π-systems. In: Putz MV (ed) Carbon bonding and structures: advances in physics and chemistry. Springer Science + Business Media, London, pp 1–32

    Chapter  Google Scholar 

  • Putz MV (2011b) Electronegativity and chemical hardness: different patterns in quantum chemistry. Curr Phys Chem 1:111–139

    Article  CAS  Google Scholar 

  • Putz MV (2012a) Quantum theory: density, condensation, and bonding. Apple Academics, Toronto

    Google Scholar 

  • Putz MV (2012b) Density functional theory of Bose-Einstein condensation: road to chemical bonding quantum condensate. Struct Bond 149:1–50

    Article  CAS  Google Scholar 

  • Putz MV (2012c) Chemical reactivity and biological activity criteria from DFT parabolic dependency E = E(N). In: Roy AK (ed) Theoretical and computational developments in modern density functional theory. NOVA Science Publishers, New York, pp 449–484

    Google Scholar 

  • Putz MV (2013) Koopmans’ analysis of chemical hardness with spectral like resolution. Sci World J 2013:348415

    Article  Google Scholar 

  • Putz MV (2014) Nanouniverse expanding macrouniverse: from elementary particles to dark matter and energy. In: Putz MV (ed) Quantum nanosystems: structure, properties and interactions. Apple Academics Press & CRC Press, Toronto, pp 1–57

    Google Scholar 

  • Putz MV (2016a) Quantum nanochemistry: a fully integrated approach. In: Quantum molecules and reactivity, vol III. Apple Academic Press & CRC Press, Toronto

    Google Scholar 

  • Putz MV (2016b) Quantum nanochemistry: a fully integrated approach. In: Quantum solids and orderability, vol IV. Apple Academic Press & CRC Press, Toronto

    Google Scholar 

  • Putz MV, Chattaraj PK (2013) Electrophilicity kernel and its hierarchy through softness in conceptual density functional theory. Int J Quantum Chem 113:2163–2171

    Article  CAS  Google Scholar 

  • Putz MV, Ori O (2012) Bondonic characterization of extended nanosystems: application to graphene’s nanoribbons. Chem Phys Lett 548:95–100

    Article  CAS  Google Scholar 

  • Putz MV, Ori O (2014) Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects. Molecules 19:4157–4188

    Article  Google Scholar 

  • Putz MV, Ori O (2015a) Bondonic chemistry: physical origins and entanglement prospects. In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter: advances in physics and chemistry. Springer, Dordrecht, pp 229–260

    Google Scholar 

  • Putz MV, Ori O (2015b) Predicting bondons by goldstone mechanism with chemical topological indices. Int J Quantum Chem 115:137–143

    Article  CAS  Google Scholar 

  • Putz MV, Dudaș NA, Putz A-M (2015a) Bondonic chemistry: predicting ionic liquids’ (IL) bondons by Raman-IR spectra. In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter: advances in physics and chemistry. Springer, Dordrecht, pp 347–382

    Google Scholar 

  • Putz MV, Duda-Seiman C, Duda-Seiman DM, Bolcu C (2015b) Bondonic chemistry: consecrating silanes as metallic precursors for silicenes materials. In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter: advances in physics and chemistry. Springer Verlag, Dordrecht, pp 323–346

    Google Scholar 

  • Putz MV, Pitulice L, Dascălu D, Isac D (2015c) Bondonic chemistry: non-classical implications on classical carbon systems. In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter: advances in physics and chemistry. Springer, Dordrecht, pp 261–320

    Google Scholar 

  • Putz MV, Ori O, Diudea M (2016a) Bondonic electronic properties of 2D graphenic lattices with structural defects. In: Aliofkhazraei M, Ali N, Milne WI, Ozkan CS, Mitura S, Gervasoni JL (eds) Graphene science handbook, electrical and optical properties, vol 3. CRC Press/Taylor & Francis Group, Boca Raton, pp 55–80

    Chapter  Google Scholar 

  • Putz MV, Ori O, Diudea M, Szefler B, Pop R (2016b) Bondonic chemistry: spontaneous symmetry breaking of the topo-reactivity on graphene. In: Ashrafi AR, Diudea MV (eds) Distances, symmetry and topology in carbon nanomaterials. Springer, Dordrecht, pp 345–389

    Chapter  Google Scholar 

  • Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283–1342

    Article  CAS  Google Scholar 

  • Reimann SM, Koskinen M, Manninen M (2000) Formation of Wigner molecules in small quantum dots. Phys Rev B 62:8108–8113

    Article  CAS  Google Scholar 

  • Ruedenberg K, Schmidt MW (2007) Why does electron sharing lead to covalent bonding? A variational analysis. J Comp Chem 28:391–410

    Article  CAS  Google Scholar 

  • Rueger A (2000) Physical emergence, diachronic and synchronic. Synthese 124:297–322

    Article  Google Scholar 

  • Rueger A (2006) Functional reduction and emergence in the physical sciences. Synthese 151:335–346

    Article  Google Scholar 

  • Sahin H, Sivek J, Li S, Partoens B, Peeters FM (2013) Stone-Wales defects in silicene: formation, stability, and reactivity of defect sites. Phys Rev B 88:045434

    Article  Google Scholar 

  • Scerri ER (2000) Have orbitals really been observed? J Chem Edu 77:1492–1494

    Article  CAS  Google Scholar 

  • Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070

    Article  Google Scholar 

  • Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  • Shaik S, Danovich D, Wu W, Hiberty P (2009) Charge-shift and its manifestations in chemistry. Nature Chem 1:443–449

    Article  CAS  Google Scholar 

  • Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  • Tan ZB, Cox D, Nieminen T, Lähteenmäki P, Golubev D, Lesovik GB, Hakonen PJ (2015) Cooper pair splitting by means of graphene quantum dots. Phys Rev Lett 114:1–5

    Google Scholar 

  • Terrones M, Botello-Mendez AR, Campos-Delgado J, Lopez-Urias F, Vega-Cantu YI, Rodriguez-Macias FJ, Elias AL, Munoz-Sandoval E, Cano-Marquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  Google Scholar 

  • Todeschini R, Consonni V (2000) handbook of molecular descriptors. Wiley, Weinheim

    Book  Google Scholar 

  • Wigner EP (1934) On the interaction of electrons in metals. Phys Rev 46:1002–1011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai V. Putz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putz, M.V. (2018). Add on. The Bondon: A New Theory of Electron Effective Coupling and Density Ensembles. In: Structural Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-55875-2_9

Download citation

Publish with us

Policies and ethics