The Modeling in Molecular Magnetism

Chapter

Abstract

The molecular magnetism is a vault full of treasures for both fundamental and applied sciences, appealing to chemists inclined for practical work, synthetic or instrumental, as well as analytic spirits, dealing with concepts and computation. It was born about two decades before the end of the past millennium and is still vivid nowadays, forty years later. Molecular magnetism, the new face of magneto-chemistry, has grown symbiotically with modern theoretical chemistry, in the age of the computer revolution, when the accessibility of quantum calculations have achieved user-friendly status. The field is dedicated to re-enacting the knowledge developed by physicists since the 1950s (only at a conceptual level and, often, in the language of solid state theory), taking case studies of molecular nature, which enable a completely new perspective. The orbital concepts have been largely embraced and enjoyed, at least at the level of qualitative models, even by people dedicated to the experimental branches, the field having an intrinsic interdisciplinary bedrock. The advanced theory and method development is necessary to the consolidation of this background, facing further more complex tasks and challenges. This chapter presents a primer in the structural chemistry of molecular magnetism and its relation with the properties, starting first with generalities on the phenomenological side. The Heisenberg-Dirac-van Vleck (HDvV) spin Hamiltonian, met previously in the frame of Valence Bond theory, is taken here in its most frequent use: the modeling of inter-center effective exchange coupling of magnetic ions. Other spin Hamiltonian components, Zeeman and Zero Field Splitting (ZFS) are introduced, aside the operational definitions of measurable quantities, magnetization and susceptibility. We call attention to the fact that, sometimes, the pragmatic use of phenomenological tools can be misleading, if not controlled by more advanced structural reasoning. The computation modeling draws guidelines for parametric dimensions unavailable by experiments. Within the current state of the art, the ab initio approach can even provide predictions, helping the goals of property engineering. We present, with application examples, the two branches of methods for calculation of exchange coupling constants: Broken Symmetry (via Density Functional Theory, BS-DFT) and multi-configurational wave function theory (e.g. Complete Active Space Self-Consistent Field, CASSCF). Different methods, or different settings within the same procedure, may give variate parametric sets, more or less close to the reproduction of experimental data, but it is important that the range and relative ratios of the values are usually stable, safe for understanding the underlying mechanisms, or for fixing parametric uncertainties of the phenomenological fit. A special area of the molecular magnetism is those based on lanthanides, in mono-nuclear or poly-nuclear complexes, where the specifics of electronic structure (partly developed in the ligand field chapter) demand special attention and strategies. The authors of this book made pioneering advances in the ab initio multi-configurational approach of realistic lanthanide complexes, analyzing first the mechanism of frequent ferromagnetic coupling in Cu–Gd complexes, recalled here briefly. The mechanism is active also in other d-f systems, but the picture becomes more complicated in the case of lanthanide sites with degenerate free ion ground states (quasi-degenerate, as ions in molecule). The quasi-degeneracy (weak ligand field splitting of multiplets) and the spin-orbit coupling are giving rise to the phenomenon of magnetic anisotropy, of crucial importance for making a molecule, and ultimately any larger system, behave as a magnet with fixed poles. Although magnetic anisotropy is a rather complex issue, we present original tools allowing a picturesque interpretation: the polar maps of state-specific magnetization functions. A detailed analysis of case studies showing the interplay of exchange coupling, ligand field, and spin-orbit effects in the magnetism of a prototypic series of d-f dinuclears illuminates the magneto-structural causalities. A section dedicated to the spin crossover effects gives new clues and perspectives to the general premises and simple modeling of the phenomena, as well as to the advanced analysis by insightful computational experiments. The Magnetism is already the basis of innumerable technical applications, its molecular and nanoscale avatars being speculated as the assets of a new future technology, called spintronics (an analogue of actual electronics, but based on spin bits). Realistically, spintronics is still a faraway desideratum, but the journey to this goal is fascinating, mustering cooperation across several borders of chemistry domains.

Keywords

Exchange coupling Spin Hamiltonian Zeeman terms Zero field splitting (ZFS) Magnetic anisotropy Ligand field Spin-orbit coupling Magnetization Magnetic susceptibility Fitting exchange coupling parameters Broken symmetry (BS) methods Complete active space self-consistent field (CASSCF) Density functional theory (DFT) calculations State-specific magnetization polar maps First principles modeling Spin crossover (SCO) Spin transition Spin pairing Ligand field stabilization energy (LFSE) Fe(II) SCO complexes Mn(III) SCO complexes 

References

  1. Abragam A, Bleaney B (1970) Electron paramagnetic resonance. Clarendon Press, OxfordGoogle Scholar
  2. Adams DA, Dei A, Rheingold AL, Hendrickson DN (1993) Bistability in the [CoII(semiquinonate)2] to [CoIII(catecholate)(semiquinonate)] valence-tautomeric conversion. J Am Chem Soc 115:8221–8229 Google Scholar
  3. ADF2013 (2015) SCM, theoretical chemistry. Vrije Universiteit, Amsterdam [http://www.scm.com]
  4. Anderson PW (1959) New approach to the theory of superexchange interactions. Phys Rev 115:2–13CrossRefGoogle Scholar
  5. Baniodeh A, Lan YH, Novitchi G, Mereacre V, Sukhanov A, Ferbinteanu M, Voronkova V, Anson CE, Powell AK (2013) Magnetic anisotropy and exchange coupling in a family of isostructural Fe2IIILn2III complexes. Dalton Trans 42:8926–8938CrossRefGoogle Scholar
  6. Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388CrossRefGoogle Scholar
  7. Cambi L, Szego L (1931) Über die magnetische Susceptibilität der komplexen Verbindungen. Chem Ber Dtsch Ges 64:2591CrossRefGoogle Scholar
  8. Cimpoesu F, Ferbinteanu M (2014) Magnetic anisotropy in case studies. In: Putz MV (ed) Quantum nanosystems: structure, properties, and interactions. Apple Academics, Ontario, pp 251–292Google Scholar
  9. Cimpoesu F, Ferbinteanu M, Frecus B, Gîrţu MA (2009) The DFT rationalization of exchange and anisotropy in one-dimensional d-p magnets: the [MnIII(porphyrin)][TCNE] case study. Polyhedron 28:2039–2043CrossRefGoogle Scholar
  10. Cimpoesu F, Dahan S, Ladeira S, Ferbinteanu M, Costes JP (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51:11279–11293CrossRefGoogle Scholar
  11. Cioslowski J (1987) Graph theoretical approach to the topological spin Hamiltonian applied to conjugated molecules. Chem Phys Lett 134:507–511CrossRefGoogle Scholar
  12. Costes JP, Dahan F, Dupuis A, Laurent JP (1996) A genuine example of a discrete bimetallic (Cu, Gd) complex: structural determination and magnetic properties. Inorg Chem 35:2400–2402CrossRefGoogle Scholar
  13. Costes JP, Dahan F, Dupuis A, Laurent JP (1997a) A general route to strictly dinuclear Cu(II)/Ln(III) complexes: structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg Chem 36:3429–3433CrossRefGoogle Scholar
  14. Costes JP, Dahan F, Dupuis A, Laurent JP (1997b) Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)?Ni(II) complex. Inorg Chem 36:4284–4286CrossRefGoogle Scholar
  15. Costes JP, Dahan F, Dupuis A, Laurent JP (2000) Is ferromagnetism an intrinsic property of the CuII/GdIII Couple? 1. Structures and magnetic properties of two novel dinuclear complexes with a μ-phenolato-μ-oximato (Cu, Gd) core. Inorg Chem 39:169–173CrossRefGoogle Scholar
  16. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565Google Scholar
  17. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) An effective method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105:1968–1986CrossRefGoogle Scholar
  18. Duan CK, Tanner PA (2010) What use are crystal field parameters? A chemist’s viewpoint. J Phys Chem A 114:6055–6062CrossRefGoogle Scholar
  19. Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clerac R (2005) Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of MnIII-FeIII-MnIII trinuclear single-molecule magnet with an ST = 9/2 spin ground state. J Am Chem Soc 127:3090–3099CrossRefGoogle Scholar
  20. Ferbinteanu M, Kajiwara T, Choi K-Y, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe(III)Dy(III) single molecule magnet quantum effects and models. J Am Chem Soc 128:9008–9009CrossRefGoogle Scholar
  21. Ferbinteanu M, Kajiwara T, Cimpoesu F, Katagiri K, Yamashita M (2007) The magnetic anisotropy and assembling of the lanthanide coordination units in [Fe(bpca)2][Er(NO3)3(H2O)4]NO3. Polyhedron 26:2069–2073CrossRefGoogle Scholar
  22. Ferbinteanu M, Cimpoesu F, Kajiwara T, Yamashita M (2009) Magnetic anisotropy and molecular assembling in complex cation–complex anion type d-f coordination compounds. Solid State Sci 11:760–765CrossRefGoogle Scholar
  23. Ferbinteanu M, Zaharia A, Gîrtu MA, Cimpoesu F (2010) Noncovalent effects in the coordination and assembling of the [Fe(bpca)2][Er(NO3)3(H2O)4]NO3 system. Cent Eur J Chem 8:519–529Google Scholar
  24. Ferbinteanu M, Cimpoesu F, Gîrtu MA, Enachescu C, Tanase S (2012) Structure and magnetism in Fe-Gd based dinuclear and chain systems: the interplay of weak exchange coupling and zero field splitting effects. Inorg Chem 51:40–50CrossRefGoogle Scholar
  25. Ferbinteanu M, Cimpoesu F, Tanase S (2015) Metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism. Struct Bond 163:185–229Google Scholar
  26. Finley JJ, Nohl H, Vogel EE, Campley RE, Zevin V, Anderson OK, Simon A (1981) Level-crossing transition in the cluster compounds Nb6I11 and HNb6I11. Phys Rev Lett 46:1472–1475CrossRefGoogle Scholar
  27. Flanagan BM, Bernhardt PV, Lüthi SR, Krausz ER, Riley MJ (2001) Ligand-field analysis of an Er(III) complex with a heptadentate tripodal N4O3 ligand. Inorg Chem 40:5401–5407CrossRefGoogle Scholar
  28. Flanagan BM, Bernhardt PV, Krausz ER, Lüthi SR, Riley MJ (2002) A ligand-field analysis of the trensal (H3trensal = 2,2′,2″-tris(salicylideneimino)triethylamine) ligand: an application of the angular overlap model to lanthanides. Inorg Chem 41:5024–5033CrossRefGoogle Scholar
  29. Flocke N, Schmalz TG (1998) Valence bond multiple excitation RVB calculations on the singlet ground states of some carbon fullerenes Cn with 20 ≤ n ≤ 60. Chem Phys Lett 298:71–78CrossRefGoogle Scholar
  30. Flocke N, Schmalz TG, Klein DJ (1998) Variational resonance valence bond study on the ground state of C60 using the Heisenberg model. J Chem Phys 109:873–880CrossRefGoogle Scholar
  31. Franke PL, Haasnoot JG, Zuur AP (1982) Tetrazoles as ligands. Part IV. Iron(II) complexes of monofunctional tetrazole ligands, showing high-spin (p5T2g)⇋low-spin transitions. Inorg Chim Acta 59:5–9CrossRefGoogle Scholar
  32. Garciabach MA, Blaise P, Malrieu JP (1992) Dimerization of polyacetylene treated as a spin-Peierls distortion of the Heisenberg Hamiltonian. Phys Rev B Condens Matter 46:15645–15651CrossRefGoogle Scholar
  33. Garciabach MA, Valenti R, Klein DJ (1997) Spin-Peierls vs. Peierls distortions in a family of conjugated polymers. Phys Rev B: Condens Matter 56:1751–1761CrossRefGoogle Scholar
  34. Guihery N, Benamor N, Maynau D, Malrieu JP (1996) Approximate size-consistent treatments of Heisenberg Hamiltonians for large systems. J Chem Phys 104:3701–3708CrossRefGoogle Scholar
  35. Gütlich P, Goodwin HA (2004) Introduction. In: Gütlich P, Goodwin HA (eds) Spin crossover in transition metal compounds I. Springer, Berlin, pp 1–47Google Scholar
  36. Gütlich P, Hauser A, Spiering H (1994) Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angew Chemie 106: 2109–2141; Angew Chemie Int Ed (1994) 33:2024–2054Google Scholar
  37. Gütlich P, Ksenofontov V, Gaspar AB (2005) Pressure effect studies on spin crossover systems. Coord Chem Rev 249:1811–1829CrossRefGoogle Scholar
  38. Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290CrossRefGoogle Scholar
  39. Hauser A (2004) Light-induced spin crossover and the high-spin? Low-spin relaxation. Top in Curr Chem 234:155–198CrossRefGoogle Scholar
  40. Heisenberg WZ (1928) Zur theorie des ferromagnetismus. Physics 49:619–636CrossRefGoogle Scholar
  41. Hu L, Reid MF, Duan CK, Xia S, Yin M (2011) Extraction of crystal-field parameters for lanthanide ions from quantum-chemical calculations. J Phys B Condens Matter 23:045501CrossRefGoogle Scholar
  42. Imoto H, Simon A (1982) Structural study of the spin-crossover transition in the cluster compounds niobium iodide (Nb6I11) and hydrogen niobium iodide (HNb6I11). Inorg Chem 21:308–319CrossRefGoogle Scholar
  43. Ishikawa N (2010) Functional phthalocyanine molecular materials. Struct Bond 135:211–228CrossRefGoogle Scholar
  44. Ishikawa N, Iino T, Kaizu Y (2002) Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic Yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A 106:9543–9550CrossRefGoogle Scholar
  45. Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y (2003) Determination of ligand-field parameters and f-electronic structures of double-decker bis (phthalocyaninato) lanthanide complexes. Inorg Chem 42:2440–2446CrossRefGoogle Scholar
  46. Ivanic J, Ruedenberg K (2001) Occupation restricted multiple active space (ORMAS). Theoret Chem Acc 106:339–351CrossRefGoogle Scholar
  47. Kahn O (1993) Molecular magnetism. VCH Publishers, New YorkGoogle Scholar
  48. Kahn O (2000) Chemistry and physics of supramolecular materials. Acc Chem Res 33:647–657CrossRefGoogle Scholar
  49. Kahn O, Martinez CJ (1998) Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science 279:44–48Google Scholar
  50. Kajiwara T, Nakano M, Takahashi K, Takaishi S, Yamashita M (2011) Structural design of easy-axis magnetic anisotropy and determination of anisotropic parameters of LnIII-CuII single-molecule magnets. Chem Eur J 17:196–205CrossRefGoogle Scholar
  51. Karbowiak M, Urbanowicz A, Reid MF (2007) 4f6 → 4f55d1 absorption spectrum analysis of Sm 2+ :SrCl 2. Phys Rev B 76:115125CrossRefGoogle Scholar
  52. Klein DJ, Zhu H, Valenti R, Garciabach MA (1997) Many-body valence-bond theory. Int J Quant Chem 65:421–438CrossRefGoogle Scholar
  53. Laurent JP, Dahan F, Dupuis A (2000) Is ferromagnetism an intrinsic property of the CuII/GdIII Couple? 2. Structures and magnetic properties of novel trinuclear complexes with a μ-phenolato-μ-oximato (Cu-Ln-Cu) cores (Ln = La, Ce, Gd). Inorg Chem 39:5994–6000CrossRefGoogle Scholar
  54. Lueken H (1999) Magnetochemie. Teubner, StuttgartCrossRefGoogle Scholar
  55. Maretti L, Ferbinteanu M, Cimpoesu F, Islam SSM, Ohba Y, Kajiwara T, Yamashita M, Yamauchi S (2007) Spin coupling in the supramolecular structure of a new tetra (quinolinetempo) yttrium(iii)complex. Inorg Chem 46:660–669CrossRefGoogle Scholar
  56. Morgan GG, Murnaghan KD, MüllerBunz H, McKee V, Harding CJ (2006) Lattice effects on the spin-crossover profile of a mononuclear manganese(III) cation. Angew Chemie 118:7350–7353; Angew Chem Int Ed (2006) 45:7192–7195Google Scholar
  57. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78Google Scholar
  58. Newman DJ, Ng BKC (1989a) Crystal field superposition model analyses for tetravalent actinides. J Phys Condens Matter 1:1613–1619Google Scholar
  59. Newman DJ, Ng BKC (1989b) The superposition model of crystal fields. Rep Prog Phys 52:699–763Google Scholar
  60. Newman DJ, Stedman G (1969) Interpretation of crystal-field parameters in the rare-earth-substituted garnets. J Chem Phys 51:3013–3023Google Scholar
  61. Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(III) complexes. J Am Chem Soc 126:3321–3331CrossRefGoogle Scholar
  62. Pierloot K (2001) Nondynamic correlation effects in transition metal coordination compounds. In: Cundari T (ed) Computational organometallic chemistry. Marcel Dekker, New York, pp 123–158Google Scholar
  63. Pierloot K (2005) Calculation of electronic spectra of transition metal complexes. In: Olivucci M (ed) Computational photochemistry, vol 16. Elsevier, Amsterdam, pp 279–315Google Scholar
  64. Pierloot K (2011) Transition metals compounds: outstanding challenges for multiconfigurational methods. Int J Quant Chem 111:3291–3301CrossRefGoogle Scholar
  65. Poganiuch P, Decurtins S, Guetlich P (1990) Thermal- and light-induced spin transition in [Fe(mtz)6](BF4)2: first successful formation of a metastable low-spin state by irradiation with light at low temperatures. J Am Chem Soc 112:3270–3278CrossRefGoogle Scholar
  66. Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2013a) Ligand field density functional theory calculation of the 4f2 → 4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+. Phys Chem Chem Phys 15:13902–13910CrossRefGoogle Scholar
  67. Ramanantoanina H, Urland W, García-Fuente A, Cimpoesu F, Daul C (2013b) Calculation of the 4f1 → 4f05d1 transitions in Ce3+-doped systems by ligand field density functional theory. Chem Phys Lett 588:260–266CrossRefGoogle Scholar
  68. Reid MF, van Pieterson L, Meijerink A (2002) Trends in parameters for the 4fN↔4fN −15d spectra of lanthanide ions in crystals. J Alloys Compd 344:240–245CrossRefGoogle Scholar
  69. Reid MF, Hu L, Frank S, Duan CK, Xia S, Yin M (2010) Spectroscopy of high-energy states of lanthanide ions. Eur J Inorg Chem 18:2649–2654CrossRefGoogle Scholar
  70. Reinen D, Atanasov M, Lee SL (1998) Second-sphere ligand field effects on oxygen ligator atoms and experimental evidence: the transition metal-oxygen bond in oxidic solids. Coord Chem Rev 175:91–158CrossRefGoogle Scholar
  71. Romstedt H, Hauser A, Spiering H (2004) High-spin–low-spin relaxation in the two-step spincrossover compound [Fe(pic)3]Cl2EtOH (pic = 2-picolylamine). J Phys Chem Solids 59:265–275CrossRefGoogle Scholar
  72. Ruiz E (2004) Theoretical study of the exchange coupling in large polynuclear transition metal complexes using DFT methods. Struct Bond 113:71–102CrossRefGoogle Scholar
  73. Said M, Maynau D, Malrieu JP (1984) Excited-state properties of linear polyenes studied through a nonempirical Heisenberg Hamiltonian. J Am Chem Soc 106:580–587CrossRefGoogle Scholar
  74. Sakamoto M, Manseki K, Okawa H (2001) d-f heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord Chem Rev 219–221:379–414CrossRefGoogle Scholar
  75. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  76. Shoji M, Koizumi K, KitagawaY Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem Phys Lett 432:343–347CrossRefGoogle Scholar
  77. Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) The effect of the lattice expansion on high spin? Low spin transitions. Chem Phys 68:65CrossRefGoogle Scholar
  78. Spiering H, Boukheddaden H, Linares J, Varret F (2004) Total free energy of a spin-crossover molecular system. Phys Rev B 70:184CrossRefGoogle Scholar
  79. Tanabe Y, Sugano SJ (1954) On the absorption spectra of complex ions II. Phys Soc Japan 9:766–779CrossRefGoogle Scholar
  80. Tanasa R, Enachescu C, Stancu A, Linares J, Codjovi E, Varret F, Haasnoot J (2005) First-order reversal curve analysis of spin-transition thermal hysteresis in terms of physical-parameter distributions and their correlations. J Phys Rev B 71:014431CrossRefGoogle Scholar
  81. Tanase S, Ferbinteanu F, Cimpoesu F (2011) Rationalization of the lanthanide-ion-driven magnetic properties in a series of 4f-5d cyano-bridged chains. Inorg Chem 50:9678–9687CrossRefGoogle Scholar
  82. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. Comput Chem 22:931–967CrossRefGoogle Scholar
  83. Urland W (1976) On the ligand-field potential for f electrons in the angular overlap model. Chem Phys 14:393–401CrossRefGoogle Scholar
  84. Urland W (1981) The assessment of the crystal-field parameters for f”-electron systems by the angular overlap model: rare-earth ions in LiMF4. Chem Phys Lett 77:58–62CrossRefGoogle Scholar
  85. van Vleck JH, Sherman A (1935) The quantum theory of valence. Rev Mod Phys 7:167–228Google Scholar
  86. Wang S, Ferbinteanu M, Yamashita M (2007) Cyanide-bridged Fe(III)-Mn(III) chain with metamagnetic properties and significant anisotropy. Inorg Chem 46:610–612CrossRefGoogle Scholar
  87. Wang S, Ferbinteanu M, Yamashita M (2008) Magnetic manifestations of competing intra- and inter-chain coupling effects in a new Fe(III)-Mn(III) cyanide-bridged complex. Solid State Sci 10:915–920CrossRefGoogle Scholar
  88. Wang S, Ferbinteanu M, Marinescu C, Dobrinescu A, Ling Q-D, Huang W (2010) Case study on a rare effect: the experimental and theoretical analysis of a manganese(III) spin-crossover system. Inorg Chem 49:9839–9851CrossRefGoogle Scholar
  89. Wang S, He WR, Ferbinteanu M, Li YH, Huang W (2013) Tetragonally compressed high-spin Mn(III) Schiff base complex: synthesis, crystal structure, magnetic properties and theoretical calculations. Polyhedron 52:1199–1205CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryUniversity of BucharestBucharestRomania
  2. 2.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania

Personalised recommendations