Skip to main content

Bond! Chemical Bond: Electronic Structure Methods at Work

  • Chapter
  • First Online:
  • 1828 Accesses

Abstract

This chapter plunges into applied quantum chemistry , with various examples, ranging from elementary notions, up to rather advanced tricks of know-how and non-routine procedures of control and analysis.

In the first section, the first-principles power of the ab initio techniques is illustrated by a simple example of geometry optimization, starting from random atoms, ending with a structure close to the experimental data, within various computational settings (HF, MP2, CCSD, DFT with different functionals). Besides assessing the performances of the different methods, in mutual respects and facing the experiment, we emphasize the fact that the experimental data are affected themselves by limitations, which should be judged with critical caution. The ab initio outputs offer inner consistency of datasets, sometimes superior to the available experimental information, in areas affected by instrumental margins. In general, the calculations can retrieve the experimental data only with semi-quantitative or qualitative accuracy, but this is yet sufficient for meaningful insight in underlying mechanisms, guidelines to the interpretation of experiment, and even predictive prospection in the quest of properties design.

The second section focuses on HF and DFT calculations on the water molecule example, revealing the relationship with ionization potentials , electronegativity , and chemical hardness (electrorigidity) and hinting at non-routine input controls, such as the fractional tuning of populations in DFT (with the ADF code) or orbital reordering trick in HF (with the GAMESS program).

Keeping the H2O as play pool, the orbital shapes are discussed, first in the simple conjuncture of the Kohn–Sham outcome, followed by rather advanced technicalities in handling localized orbital bases, in a Valence Bond (VB) calculation, serving to extract a heuristic perspective on the hybridization scheme.

In a third section, the H2 example forms the background for discussing the bond as spin-coupling phenomenology, constructing the Heisenberg-Dirac-van Vleck (HDvV) effective spin Hamiltonian . In continuation, other calculation procedures, such as Complete Active Space Self-Consistent Field (CASSCF) versus Broken-Symmetry (BS) approach, are illustrated, in a hands-on style, with specific input examples, interpreting the results in terms of the HDvV model parameters, mining for physical meaning in the depths of methodologies.

The final section presents the Valence Bond (VB) as a valuable paradigm, both as a calculation technique and as meaningful phenomenology. It is the right way to guide the calculations along the terms of customary chemical language, retrieving the directed bonds, hybrid orbitals, lone pairs, and Lewis structures, in standalone or resonating status. The VB calculations on the prototypic benzene example are put in clear relation with the larger frame of the CASSCF method, identifying the VB-type states in the full spectrum and equating them in an HDvV modeling. The exposition is closed with a tutorial showing nice graphic rules to write down a phenomenological VB modeling, in a given basis of resonance structures . The recall of VB concepts in the light of the modern computational scene carries both heuristic and methodological virtues, satisfying equally well the goals of didacticism or of exploratory research. A brief excursion is taken into the domain of molecular dynamics problems, emphasizing the virtues of the vibronic coupling paradigm (the account of mutual interaction of vibration modes of the nuclei with electron movement) in describing large classes of phenomena, from stereochemistry to reactivity. Particularly, the instability and metastability triggered in certain circumstances by the vibronic coupling determines phase transitions of technological interest, such as the information processing. The vibronic paradigm is a large frame including effects known as Jahn–Teller and pseudo Jahn–Teller type, determining distortion of molecules from formally higher possible symmetries. We show how the vibronic concepts can be adjusted to the actual computation methods, using the so-called Coupled Perturbed frames designed to perform derivatives of a self-consistent Hamiltonian, with respect to different parametric perturbations. The vibronic coupling can be regarded as interaction between spectral terms, e.g. ground state computed with a given method and excited states taken at the time dependent (TS) version of the chosen procedure. At the same time, the coupling can be equivalently and conveniently formulated as orbital promotions, proposing here the concept of vibronic orbitals , as tools of heuristic meaning and precise technical definition, in the course of a vibronic analysis. The vibronic perspective, performed on ab initio grounds, allows clear insight into hidden dynamic mechanisms. At the same time, the vibronic modeling can be qualitatively used to classify different phenomena, such as mixed valence . It can be proven also as a powerful model Hamiltonian strategy with the aim of accurate fitting of potential energy surfaces of different sorts, showing good interpolation and extrapolation features and a sound phenomenological meaning.

Finally, within the symmetry breaking chemical field theory , the intriguing electronegativity and chemical hardness density functional dependencies are here reversely considered by means of the anharmonic chemical field potential, so inducing the manifested density of chemical bond in the correct ontological order: from the quantum field/operators to observable/measurable chemical field.

This is a preview of subscription content, log in via an institution.

References

  • ADF2012.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam [http://www.scm.com]

  • Agnoli S, Granozzi G (2013) Second generation graphene: opportunities and challenges for surface science. Surf Sci 609:1–5

    Article  CAS  Google Scholar 

  • Anderson PW (1959) New approach to the theory of superexchange interactions. Phys Rev 115:2–13

    Article  CAS  Google Scholar 

  • Anderson PW (1963) Plasmons, gauge invariance, and mass. Phys Rev 130:439–442

    Article  Google Scholar 

  • Atanasov M, Reinen D (2001) Density functional studies on the lone pair effect of the trivalent group (V) elements: I. electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX3 molecules (A = N to Bi; X = H, and F to I). J Phys Chem A 105:5450–5467

    Article  CAS  Google Scholar 

  • Atanasov M, Reinen D (2002) Predictive concept for lone-pair distortions: DFT and vibronic model studies of AXn-(n–3) molecules and complexes (A = NIII to BiIII; X = F–I to I–I; n = 3–6). J Am Chem Soc 124:6693–6705

    Article  CAS  Google Scholar 

  • Bencini A, Totti F, Daul CA, Doclo K, Fantucci P, Barone V (1997) Density functional calculations of magnetic exchange interactions in polynuclear transition metal complexes. Inorg Chem 36(22):5022–5030

    Article  CAS  Google Scholar 

  • Bersuker IB (1984) The Jahn–Teller effect and vibronic interactions in modern chemistry. Plenum Press, New York

    Book  Google Scholar 

  • Bersuker IB (2001) Modern aspects of the Jahn–Teller effect theory and applications to molecular problems. Chem Rev 101:1067–1114

    Article  CAS  Google Scholar 

  • Bersuker IB (2013) Pseudo-Jahn–Teller effect: a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chem Rev 113:1351–1390

    Article  CAS  Google Scholar 

  • Bissett MA, Konabe S, Okada S, Tsuji M, Ago H (2013) Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7:10335–10343

    Article  CAS  Google Scholar 

  • Bode BM, Gordon MS (1998) Macmolplt: a graphical user interface for GAMESS. J Mol Graph Mod 16(3):133-138

    Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  • Ceulemans A, Chibotaru LF, Cimpoesu F (1997) Intramolecular charge disproportionation and the band structure of the A3C60 superconductors. Phys Rev Lett 78:3275–3728

    Article  Google Scholar 

  • Chibotaru LF, Cimpoesu F (1997) Vibronic instability of molecular configurations in the Hartree–Fock-Roothan method. Int J Quant Chem 65:37–48

    Article  CAS  Google Scholar 

  • Cimpoesu F, Hirao K (2003) The ab initio analytical approach of vibronic quantities: application to inorganic stereochemistry. Adv Quant Chem 44:370–397

    Google Scholar 

  • Cooper DL, Thorsteinsson T, Gerratt J (1999) Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy. Adv Quantum Chem 32:51–67

    Article  Google Scholar 

  • Creutz C, Taube H (1969) Direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions. J Amer Chem Soc 91:3988–3989

    Article  CAS  Google Scholar 

  • Day P, Hush NS, Clark JR (2008) Mixed valence: origins and developments. Phil Trans R Soc A 366:5–14

    Article  CAS  Google Scholar 

  • Dirac, PAM (1978) Mathematical foundations of quantum theory. In: Marlow A (ed). Academic Press, New York

    Google Scholar 

  • Dutuit O, Tabche-Fouhaile A, Nenner I, Frohlich H, Guyon PM (1985) Photodissociation processes of water vapor below and above the ionization potential. J Chem Phys 83:584–596

    Article  CAS  Google Scholar 

  • Elias DC, Nair Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613

    Article  CAS  Google Scholar 

  • Elitzur S (1975) Impossibility of spontaneously breaking local symmetries. Phys Rev D 12:3978–3982

    Article  Google Scholar 

  • Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323

    Article  Google Scholar 

  • Epstein ST (1974) The variation method in quantum chemistry. Academic Press, New York

    Google Scholar 

  • Eyring H (1931) The energy of activation for bimolecular reactions involving hydrogen and the halogens, according to the quantum mechanics. J Am Chem Soc 53:2537–2549

    Article  CAS  Google Scholar 

  • Flükiger P, Lüthi HP, Portmann S, Weber J (2000-2002) MOLEKEL version 4.3. Swiss Center for Scientific Computing, Manno (Switzerland)

    Google Scholar 

  • Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403

    Google Scholar 

  • Fradkin E, Shenker SH (1979) Phase diagrams of lattice gauge theories with Higgs fields. Phys Rev D 19:3682–3697

    Article  CAS  Google Scholar 

  • Frauendorf S (2001) Spontaneous symmetry breaking in rotating nuclei. Rev Mod Phys 73:463–514

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford CT

    Google Scholar 

  • Goldstone J (1961) Field theories with superconductor solutions. Nuovo Cim 19:154–164

    Article  Google Scholar 

  • Goldstone J, Salam A, Weinberg S (1962) Symmetry groups in nuclear and particle physics. Phys Rev 127:965–970

    Article  Google Scholar 

  • Guralnik GS, Hagen CR, Kibble TWB (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587

    Article  CAS  Google Scholar 

  • Heisenberg WZ (1928) Zur theorie des ferromagnetismus. Z f Phys 49:619

    Article  CAS  Google Scholar 

  • Higgs PW (1964a) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133

    Article  Google Scholar 

  • Higgs PW (1964b) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509

    Article  CAS  Google Scholar 

  • Hirao K, Nakano H, Nakayama K, Dupuis M (1996) A complete active space valence bond (CASVB) method. J Chem Phys 105:9227–9239

    Article  CAS  Google Scholar 

  • Hoffmann R (2013) Small but strong lessons from chemistry for nanoscience. Angew Chem Int Ed 52:93–103

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electronic gas. Phys Rev 136:864–871

    Article  Google Scholar 

  • Hwang C, Siegel DA, Mo SK, Regan W, Ismach A, Zhang Y, Zettl A, Lanzara A (2012) Fermi velocity engineering in graphene by substrate modification. Sci Rep 2:590/1–4

    Google Scholar 

  • Ishida S, Iwamoto T, Kabuto C, Kira M (2003) A stable silicon-based allene analogue with a formally sp-hybridized silicon atom. Nature 421 (6924):725-727

    Google Scholar 

  • Islam N, Ghosh DC (2011) The electronegativity and the global hardness are periodic properties of atoms. J Quantum Info Sci 1:135–141

    Article  CAS  Google Scholar 

  • Kibble TWB (1967) Symmetry breaking in non-abelian gauge theories. Phys Rev 155:1554–1561

    Article  CAS  Google Scholar 

  • Kirchner MT, Das D, Boese R (2008) Cocrystallization with acetylene: molecular complex with methanol. Cryst Growth Des 8:763–765

    Article  CAS  Google Scholar 

  • Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  • Kryachko ES (1995) On wave-function correction to Hellmann-Feynman force: Hartree–Fock method. Int J Quant Chem 56:3–7

    Article  CAS  Google Scholar 

  • Kuhn H (2008) Origin of life—symmetry breaking in the universe: emergence of homochirality. Curr Opin Colloid Interface Sci 13:3–11

    Article  CAS  Google Scholar 

  • Kutzelnigg W (1989) Ab initio calculation of molecular properties. J Mol Struct (Theochem) 202:11–61

    Article  Google Scholar 

  • Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26:1200–1208

    Article  CAS  Google Scholar 

  • Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, de Castro Neto AH, Crommie MF (2010) Strain-induced pseudo-magnetic fields greater than. Science 329:544–547

    Article  CAS  Google Scholar 

  • Li J, Duke B, McWeeny R (2007) VB2000 Version 2.0, SciNet Technologies, San Diego, CA

    Google Scholar 

  • Li J, McWeeny R (2002) VB2000: pushing valence bond theory to new limits. Int J Quantum Chem 89:208–216

    Article  CAS  Google Scholar 

  • Long X, Zhao F, Liu H, Huang J, Lin Y, Zhu J, Luo S-N (2015) Anisotropic shock response of stone wales defects in graphene. J Phys Chem C 119:7453–7460

    Article  CAS  Google Scholar 

  • Mahapatra S, Köppel G (1998) Quantum mechanical study of optical emission spectra of Rydberg-excited H3 and its isotopomers. Phys Rev Lett 81:3116–3120

    Article  CAS  Google Scholar 

  • Marcus RA (1956) On the oxidation-reduction reactions involving electron transfer. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  • McWeeny R (2001) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  • Mikami K, Yamanaka M (2003) Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Chem Rev 103:3369–3400

    Article  CAS  Google Scholar 

  • Mistrík I, Reichle R, Helm H, Müller U (2001) Predissociation of H3 Rydberg states. Phys Rev A 63:042711

    Article  Google Scholar 

  • Mitani M, Mori H, Takano Y, Yamaki D, Yoshioka Y, Yamaguchi K (2000) Density functional study of intramolecular ferromagnetic interaction through m-phenylene coupling unit (I): UBLYP, UB3LYP and UHF calculation. J Chem Phys 113:4035–4050

    Article  CAS  Google Scholar 

  • Monin A, Voloshin MB (2010) Spontaneous and induced decay of metastable strings and domain walls. Ann Phys 325:16–48

    Article  CAS  Google Scholar 

  • Mösch-Zanetti NC, Roesky HW, Zheng W, Stasch A, Hewitt M, Cimpoesu F, Schneider TR, Prust J (2000) The first structurally characterized aluminum compounds with terminal acetylide groups. Angew Chem Int Ed 39:3099–3101

    Article  Google Scholar 

  • Nakano H, Sorakubo K, Nakayama K, Hirao K (2002) In: Cooper DL (ed) Valence Bond Theory. Elsevier Science, Amsterdam, pp 55–77

    Chapter  Google Scholar 

  • Nambu J, Jona-Lasinio G (1961) Dynamical model of elementary particles based on an analogy with superconductivity. Phys Rev 122:345–358

    Article  CAS  Google Scholar 

  • NIST (2015) National Institute for Science and Technology (NIST) on Constants, Units, and Uncertainty. http://physics.nist.gov/cuu/Constants/index.html

  • Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimmers. J Chem Phys 74:5737–5743

    Article  CAS  Google Scholar 

  • Noodleman L, Davidson ER (1986) Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers. Chem Phys 109:131–143

    Article  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Google Scholar 

  • Onishi T, Takano Y, Kitagawa Y, Kawakami T, Yoshioka Y, Yamaguchi K (2001) Theoretical study of the magnetic interaction for M–O–M type metal oxides: comparison of broken-symmetry approaches. Polyhedron 20:1177–1184

    Article  CAS  Google Scholar 

  • Ori O, Cataldo F, Putz MV (2011) Topological anisotropy of stone-wales waves in graphenic fragments. Int J Mol Sci 12:7934–7949

    Article  CAS  Google Scholar 

  • Ortiz JV (1999) Toward an exact one-electron picture of chemical bonding. Adv Quantum Chem 35:33–52

    Article  CAS  Google Scholar 

  • Palmer AR (2004) Symmetry breaking and the evolution of development. Science 306:828–833

    Article  CAS  Google Scholar 

  • Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  • Parr RG, Gázquez JL (1993) Hardness functional. J Phys Chem 97:3939–3940

    Article  CAS  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  • Pauling L, Wheland GW (1933) The nature of the chemical bond. V. The quantum-mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J Chem Phys 1362

    Google Scholar 

  • Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Polanyi JC, Wong WH (1969) Location of energy barriers. I. Effect on the dynamics of reactions A + BC. J Chem Phys 51:1439–1450

    Article  CAS  Google Scholar 

  • Pulay P (1987) Analytical derivative methods in quantum chemistry. In: Lawley KP (ed) Ab Initio Methods in Quantum Chemistry. John Wiley, New York

    Google Scholar 

  • Putz MV (2008) The chemical bond: spontaneous symmetry-breaking approach. Symmetry: Cult Sci 19:249–262

    Google Scholar 

  • Putz MV (2010) The bondons: the quantum particles of the chemical bond. Int J Mol Sci 11:4227–4256

    Article  CAS  Google Scholar 

  • Putz MV (2011) Electronegativity and chemical hardness: different patterns in quantum chemistry. Curr Phys Chem 1:111–139

    Article  CAS  Google Scholar 

  • Putz MV (2016a) Quantum nanochemistry: a fully integrated approach. Vol 3: quantum molecules and reactivity. Apple Academic Press & CRC Press, Toronto

    Google Scholar 

  • Putz MV (2016b) Chemical field theory: the inverse density problem of electronegativity and chemical hardness for chemical bond. Curr Phys Chem 7(2):133-146. June 2017 doi:10.2174/1877946806666160627101209

  • Putz MV (2016c) Quantum nanochemistry: a fully integrated approach. Vol II: quantum atoms and periodicity. Apple Academic Press & CRC Press, Toronto

    Google Scholar 

  • Putz MV, Ori O (2015) Predicting bondons by Goldstone mechanism with chemical topological indices. Int J Quantum Chem 115:137–143

    Article  CAS  Google Scholar 

  • Putz MV, Ori O, Diudea M, Szefler B, Pop R (2016) Bondonic chemistry: spontaneous symmetry breaking of the topo-reactivity on graphene. In: Ali Reza Ashrafi, Mircea V Diudea (eds) Chemistry and physics: distances, symmetry and topology in carbon nanomaterials. Springer, Dordrecht, pp 345–389

    Google Scholar 

  • Raimondi M, Cooper DL (1999) Ab initio modern valence bond theory. In: Surján PR, Bartlett RJ, Bogár F, Cooper DL, Kirtman B, Klopper W, Kutzelnigg W, March NH, Mezey PG, Müller H, Noga J, Paldus J, Pipek J, Raimondi M, Røeggen I, Sun JQ, Surján PR, Valdemoro C, Vogtner S (eds) Topics in current chemistry: localization and delocalization, vol 203. Reidel, Dordrecht, pp 105–120

    Google Scholar 

  • Robin MB, Day P (1967) Mixed-valence chemistry: a survey and classification. Adv Inorg Chem Radiochem 10:247–422

    Article  CAS  Google Scholar 

  • Ruckenstein E, Berim GO (2010) Contact angle of a nanodrop on a nanorough solid surface. Adv Colloid Interface Sci 154:56–76

    Article  CAS  Google Scholar 

  • Ruiz E, Cano J, Alvarez S, Alemany P (1999) Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J Comp Chem 20:1391–1400

    Article  CAS  Google Scholar 

  • Sato S (1955) On a new method of drawing the potential energy surface. J Chem Phys 23:592

    Article  CAS  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  • Sheka EF (2007) Odd electrons in molecular chemistry, surface science, and solid state magnetism. Int J Quantum Chem 107:2935–2955

    Article  CAS  Google Scholar 

  • Sheka EF (2012) Computational strategy for graphene: insight from odd electrons correlation. Int J Quantum Chem 112:3076–3090

    Article  CAS  Google Scholar 

  • Sheka EF (2013) In: Hetokka M, Brandas E, Maruani J, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 27, pp 249–284

    Google Scholar 

  • Sheka EF (2014) The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int J Quantum Chem 114:1079–1095

    Article  CAS  Google Scholar 

  • Song L, Chen Z, Ying F, Song J, Chen X, Su P, Mo Y, Zhang Q, Wu W (2012) XMVB 2.0: an ab initio non-orthogonal valence bond program. Xiamen University, Xiamen 361005, China

    Google Scholar 

  • Song L, Mo Y, Zhang Q, Wu W (2005) XMVB: a program for ab initio nonorthogonal valence bond computations. J Comput Chem 26:514–521

    Article  CAS  Google Scholar 

  • Sorkin A, Iron MA, Truhlar DG (2008) Density functional theory in transition-metal chemistry: relative energies of low-lying states of iron compounds and the effect of spatial symmetry breaking. J Chem Theory Comput 4:307–315

    Article  CAS  Google Scholar 

  • Staroverov VN, Davidson ER (2000) Distribution of effectively unpaired electrons. Chem Phys Lett 330:161–168

    Article  CAS  Google Scholar 

  • te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  • Terenziani F, Painelli A, Katan C, Charlot M, Blanchard-Desce M (2006) Chromophores: symmetry breaking and solvatochromism. J Am Chem Soc 128:15742–15755

    Article  CAS  Google Scholar 

  • Thorsteinsson T, Cooper DL (1998) Modern valence bond descriptions of molecular excited states: an application of CASVB. Int J Quant Chem 70:637–650

    Article  CAS  Google Scholar 

  • Tudoran MA, Putz MV (2015) Molecular graph theory: from adjacency information to colored topology by chemical reactivity. Curr Org Chem 19:358–385

    Article  Google Scholar 

  • van Vleck JH, Sherman A (1935) The quantum theory of valence. Rev Mod Phys 7:167–228

    Article  Google Scholar 

  • Walsh, AD (1953). The electronic orbitals, shapes, and spectra of polyatomic molecules. Part IV. Tetratomic hydride molecules, AH3. J Chem Soc 2296–2301

    Google Scholar 

  • Weinberg S (1996) The quantum theory of fields, vol 2: modern applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, Illinois

    Google Scholar 

  • Wu Q, Wu Y, Hao Y, Geng J, Charlton M, Chen S, Ren Y, Ji H, Li H, Boukhvalov DW, Piner RD, Bielawski CW, Ruoff RS (2013) Chem Commun 49:677–679

    Article  Google Scholar 

  • Yamaguchi Y, Osamura Y, Goddard JD, Schaeffer H III (1994) A new dimension to quantum chemistry: analytic derivative methods in ab-initio molecular electronic structure theory. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanica Cimpoesu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cimpoesu, F., Putz, M.V., Ferbinteanu, M. (2018). Bond! Chemical Bond: Electronic Structure Methods at Work. In: Structural Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-55875-2_4

Download citation

Publish with us

Policies and ethics