Atomic Structure and Quantum Mechanics

  • Fanica Cimpoesu
  • Mihai V. Putz
  • Marilena Ferbinteanu


Like most books dedicated to structural chemistry, we start with a short recall of the long history leading to current theories of the atomic constitution of matter and the structure of atoms, mentioning Bohr’s crude model and, subsequently, the quantum mechanics frame. A brief introduction to quantum theory, operator and matrix techniques is provided, with annotations explaining the intriguing puzzle of the facts and non-intuitive reasons that contoured this paradigm. The story of Schrödinger’s cat is retold, where the animal is not hurt, replacing the dead or alive states with a sleep versus awake scenario, making the probabilistic paradox quite clear, as a legitimate mixing of wave functions symbolizing the state of the system. The quantum structure of the atom is presented in an original way, i.e. by putting a special emphasis on the effective role in chemistry of Spherical Harmonics functions, grasping the concepts in an intuitive manner, with the help of heuristic symmetry reasons. Taking variable transformations as artifices in the Schrödinger equation of the hydrogen atom, the spectrum of orbital energies unfolds without following through to a complete solution. The chapter offers picturesque descriptions and explanatory artifices which are original, not met in other textbooks. An incursion into the even more mysterious world of relativistic quantum mechanics is made, bringing electron spin into sight, along with related consequences, important for understanding further topics, such as atomic and molecular magnetism. The complexity of the theorization is increased by incorporating the Feynman path integral method, bringing pictures from a territory less often visited by chemists, for the sake of a complete cross-border perspective. Finally, while introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic Heisenberg Uncertainty Relationship (HUR) is recovered for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor \(\sqrt {1 - n^{2} }\), in terms of magnitude \(n \in \left[ {0,1} \right]\) of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence.


Quantum numbers Quantum operators Schrödinger equation Hamiltonian Matrix method Perturbation theory Atomic shells Spherical harmonics Electronic spin Relativistic quantum chemistry Dirac equation Path integrals Heisenberg uncertainty Wave-particle duality 


  1. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New YorkGoogle Scholar
  2. Batelaan H, Gay TJ, Schwendiman JJ (1997) Stern-Gerlach effect for electron beams. Phys Rev Lett 79:4517–4521CrossRefGoogle Scholar
  3. Bethe H (1997) Theory of the passage of fast corpuscular rays through matter (translated). In: Bethe H (ed) Selected works of Hans A. Bethe with commentary. World Scientific series in 20th century physics. World Scientific, Singapore, pp 77–154Google Scholar
  4. Bethe H, Jackiw R (1968) Intermediate quantum mechanics, 2nd edn. Benjamin, New YorkGoogle Scholar
  5. Blaga L (1943) Trilogia cunoasterii. The trilogy of knowledge. Reprinted (2013), Humanitas, BucharestGoogle Scholar
  6. Blinder SM (1993) Analytic form for the nonrelativistic Coulomb propagator. Phys Rev A 43:13–16CrossRefGoogle Scholar
  7. Bohr N (1923) Linienspektren und atombau. Ann Phys 71:228–288CrossRefGoogle Scholar
  8. Breit G (1932) Dirac’s equation and the spin–spin interactions of two electrons. Phys Rev 39:616–624CrossRefGoogle Scholar
  9. de Broglie L (1987) Interpretation of quantum mechanics by the double solution theory. In: Annales de la Fondation Louis de Broglie, vol 12. Fondation Louis de Broglie. Paris, France, pp 399–421Google Scholar
  10. Di Francesco P, Mathieu P, Sénéchal D (1997) Conformal field theory. In: Graduate texts in contemporary physics. Springer, BerlinGoogle Scholar
  11. Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624CrossRefGoogle Scholar
  12. Dirac PAM (1944) The principles of quantum mechanics. Oxford University Press, OxfordGoogle Scholar
  13. Duru IH, Kleinert H (1979) Solution of the path integral for the H-atom. Phys Lett B 84:185–188CrossRefGoogle Scholar
  14. Duru IH, Kleinert H (1982) Quantum mechanics of H-atom from path integrals. Fortschr Physik 30:401–435CrossRefGoogle Scholar
  15. Faas S, van Lenthe JH, Hennum AC, Snijders JG (2000) An ab initio two-component relativistic method including spin–orbit coupling using the regular approximation. J Chem Phys 113:4052–4059CrossRefGoogle Scholar
  16. Feynman RP, Kleinert H (1986) Effective classical partition function. Phys Rev A 34:5080–5084CrossRefGoogle Scholar
  17. Gerlach W, Stern O (1922) Das magnetische moment des silberatoms. Z Physik 9:353–355CrossRefGoogle Scholar
  18. Gordon W (1926) Der comptoneffekt nach der schrödingerschen. Z Physik 40:117–133CrossRefGoogle Scholar
  19. Greiner W, Reinhardt J (1994) Quantum electrodynamics. Springer, BerlinCrossRefGoogle Scholar
  20. Hall MJW (2001) Exact uncertainty relations. Phys Rev A 64:052103CrossRefGoogle Scholar
  21. Heisenberg W (1927) Über den anschulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys 43:172–198CrossRefGoogle Scholar
  22. Jackiw R (1967) Quantum mechanical sum rules. Phys Rev 157:1220–1225CrossRefGoogle Scholar
  23. Jensen F (2007) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  24. Joas C, Lehner C (2009) The classical roots of wave mechanics: Schrödinger’s transformations of the optical-mechanical analogy. Stud Hist Philos M P 40:338–351Google Scholar
  25. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Comm Pure and Appl Math 10:151–177CrossRefGoogle Scholar
  26. Klein O (1926) Quantentheorie und fünfdimensionale relativitätstheorie. Z Physik 37:895–906CrossRefGoogle Scholar
  27. Kleinert H (1996) Path integral for a relativistic spinless coulomb system. Phys Lett A 212:15–21CrossRefGoogle Scholar
  28. Kleinert H (2004) Path integrals in quantum mechanics: statistics and polymer physics, 3rd edn. World Scientific, SingaporeGoogle Scholar
  29. Kleinert H, Pelster A, Putz MV (2002) Variational perturbation theory for Markov processes. Phys Rev E 65:066128/1-7Google Scholar
  30. Kuhn W (1925) Regarding the total strength of a condition from outgoing absorption lines. Z Phys 33:408–412CrossRefGoogle Scholar
  31. Mehra J, Rechenberg H (1982) The historical development of quantum theory: the formulation of matrix mechanics and its modifications 1925–1926. Springer, New YorkCrossRefGoogle Scholar
  32. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkGoogle Scholar
  33. Noether E (1918) Invariante variations probleme. In: Weidmannsche Buchhandlung, Berlin, vol 18, pp 235–257Google Scholar
  34. Ozawa M (2002) Position measuring interactions and the Heisenberg uncertainty principle. Phys Lett A 299:1–7CrossRefGoogle Scholar
  35. Ozawa M (2003a) Physical content of the Heisenberg uncertainty relation: limitation and reformulation. Phys Lett A 318:21–29CrossRefGoogle Scholar
  36. Ozawa M (2003b) Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys Rev A 67:042105/1-6Google Scholar
  37. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  38. Pauli W (1924) Zur frage der theoretischen deutung der satelliten einiger spektrallinien und ihrer beeinflussung durhc magnetische Felder. Naturwissenschaften 12:741–743CrossRefGoogle Scholar
  39. Pauli W (1925) On the connexion between the completion of electron groups in an atom with the complex structure of spectra. Z Physik 31:765–785CrossRefGoogle Scholar
  40. Pauli W (1964) Nobel lecture, December 13, 1946: exclusion principle and quantum mechanics. Nobel lectures, physics. Elsevier Publishing, Amsterdam, pp 1942–1962Google Scholar
  41. Putz MV (2003) Contributions within density functional theory with applications in chemical reactivity theory and electronegativity. Parkland, Florida.
  42. Putz MV (2009) Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems. Int J Mol Sci 10:4816–4940CrossRefGoogle Scholar
  43. Putz MV (2010a) Compactness aromaticity of atoms in molecules. Int J Mol Sci 11:1269–1310CrossRefGoogle Scholar
  44. Putz MV (2010b) On Heisenberg uncertainty relationship, its extension, and the quantum issue of wave-particle duality. Int J Mol Sci 11:4124–4139CrossRefGoogle Scholar
  45. Putz MV (2012) Valence atom with Bohmian quantum potential: the golden ratio approach. Chem Central J 6:1–16. doi: 10.1186/1752-153X-6-135 CrossRefGoogle Scholar
  46. Putz MV (2016a) Quantum nanochemistry: a fully integrated approach. Vol I: quantum theory and observability. Apple Academic Press, CRC Press, TorontoGoogle Scholar
  47. Putz MV (2016b) Quantum nanochemistry: a fully integrated approach. Vol II: quantum atoms and periodicity. Apple Academic Press, CRC Press, TorontoGoogle Scholar
  48. Putz MV (2017) Chemical field theory: the inverse density problem of electronegativity and chemical hardness for chemical bond. Curr Phys Chem 7(2):133−146. doi: 10.2174/1877946806666160627101209
  49. Reiche F, Thomas W (1925) Uber die Zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z Phys 34:510–525CrossRefGoogle Scholar
  50. Reiher M, Wolf A (2009) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  51. Robertson HP (1929) The uncertainty principle. Phys Rev 34:163–164CrossRefGoogle Scholar
  52. Schrödinger E (1926) An undulatory theory of the mechanics of atoms in molecules. Phys Rev Lett 28:1049–1070Google Scholar
  53. Schrödinger E (1930) About Heisenberg uncertainty relation. Proc Pruss Acad Sci Phys Math 19:296–303Google Scholar
  54. Sundermeyer K (2014) Symmetries in fundamental physics. Springer, HeidelbergCrossRefGoogle Scholar
  55. Thaller B (2002) The Dirac operator. In: Schwerdtfeger P (ed) Relativistic electronic structure theory: fundamentals. Elsevier Science, AmsterdamGoogle Scholar
  56. Thomas W (1925) Uber die zahl der dispersionselectronen, die einem starionären zustande zugeordnet sind. Naturwissenschaftern 13:510–525CrossRefGoogle Scholar
  57. Uhlenbeck GE, Goudsmit S (1925) Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons. Naturwissenschaften 47:953–954Google Scholar
  58. van Leeuwen R, van Lenthe E, Baerends EJ, Snijder JG (1994) Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J Chem Phys 101:1272–1281CrossRefGoogle Scholar
  59. van Lenthe E, Baerends EJ, Snijder JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  60. von Meyenn K (1994) Quantenmechanik und Weimarer Republik. Friedr. Vieweg Sohn Verlagsgesellshaft, Braunschweig, WiesbadenCrossRefGoogle Scholar
  61. Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749–759CrossRefGoogle Scholar
  62. Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, IllinoisGoogle Scholar
  63. Wolfram Research, Inc. (2014) Mathematica. Champaign, IllinoisGoogle Scholar
  64. Zeeman P (1897) On the influence of magnetism on the nature of the light emitted by a substance. Phil Mag 43:226–239CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fanica Cimpoesu
    • 1
  • Mihai V. Putz
    • 2
  • Marilena Ferbinteanu
    • 3
  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  2. 2.West University of Timişoara & National Institute of Research and Development for Electrochemistry and Condensed Matter Timişoara (INCEMC)TimişoaraRomania
  3. 3.Department of Inorganic ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations