Skip to main content

Structure-Function Relationship of the Voltage-Gated Calcium Channel Cav1.1 Complex

  • Chapter
  • First Online:
Membrane Dynamics and Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 981))

Abstract

Voltage-gated calcium (Cav) channels are miniature membrane transistors that convert membrane electrical signals to intracellular Ca2+ transients that trigger many physiological events. In mammals, there are ten subtypes of Cav channel, among which Cav1.1 is the first Cavα1 to be cloned. Cav1.1 is specified for the excitation–contraction coupling of skeletal muscles, and has been a prototype in the structural investigations of Cav channels. This article summarized the recent advances in the structural elucidation of Cav1.1 and the mechanistic insights derived from the 3.6 Å structure obtained using single-particle, electron cryomicroscopy. The structure of the Cav1.1 complex established the framework for mechanistic understanding of excitation–contraction coupling and provides the template for molecular interpretations of the functions and disease mechanisms of Cav and Nav channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cav:

Voltage-gated calcium channel

DHPR:

Dihydropyridine receptor

E-C coupling:

Excitation-contraction coupling

Nav:

Voltage-gated sodium channel

RyR:

Ryanodine receptor

TM:

Transmembrane

VGIC:

Voltage-gated ion channel

VSD:

Voltage sensing domain

References

  1. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  3. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  CAS  PubMed  Google Scholar 

  4. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Article  CAS  PubMed  Google Scholar 

  5. Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    Article  CAS  PubMed  Google Scholar 

  6. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52:I3–16

    CAS  PubMed  Google Scholar 

  7. Kohlhardt M, Fleckenstein A (1977) Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 298:267–272

    Article  CAS  PubMed  Google Scholar 

  8. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    Article  CAS  PubMed  Google Scholar 

  9. Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Llinas RR, Sugimori M, Cherksey B (1989) Voltage-dependent calcium conductances in mammalian neurons. The P channel. Ann NY Acad Sci 560:103–111

    Article  CAS  PubMed  Google Scholar 

  11. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    CAS  PubMed  Google Scholar 

  12. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature 537:191–196

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28:220–228

    Article  CAS  PubMed  Google Scholar 

  16. Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    Article  CAS  PubMed  Google Scholar 

  17. Dolphin AC (2013) The alpha2delta subunits of voltage-gated calcium channels. Biochim Biophys Acta 1828:1541–1549

    Article  CAS  PubMed  Google Scholar 

  18. Cheng W, Altafaj X, Ronjat M, Coronado R (2005) Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci USA 102:19225–19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R et al (1996) Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 93:13961–13966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schredelseker J, Di Biase V, Obermair GJ, Felder ET, Flucher BE, Franzini-Armstrong C, Grabner M (2005) The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proc Natl Acad Sci USA 102:17219–17224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andronache Z, Ursu D, Lehnert S, Freichel M, Flockerzi V, Melzer W (2007) The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci USA 104:17885–17890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang MG, Campbell KP (2003) Gamma subunit of voltage-activated calcium channels. J Biol Chem 278:21315–21318

    Article  CAS  PubMed  Google Scholar 

  23. Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867

    Article  CAS  PubMed  Google Scholar 

  24. Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F (1999) Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci 19:684–691

    CAS  PubMed  Google Scholar 

  25. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: an ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F, Cui M, Hoffman D, Donevan S (2011) Pregabalin is a potent and selective ligand for alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J Pharmacol 667:80–90

    Article  CAS  PubMed  Google Scholar 

  28. Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N (2003) Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J Mol Biol 332:171–182

    Article  CAS  PubMed  Google Scholar 

  29. Van Petegem F, Clark KA, Chatelain FC, Minor DL (2004) Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429:671–675

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hu HL, Wang Z, Wei RS, Fan GZ, Wang QL, Zhang KM, Yin CC (2015) The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex. Sci Rep 5:8370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murata K, Nishimura S, Kuniyasu A, Nakayama H (2010) Three-dimensional structure of the alpha(1)-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy. J Electron Microsc 59:215–226

    Article  CAS  Google Scholar 

  32. Serysheva II, Ludtke SJ, Baker MR, Chiu W, Hamilton SL (2002) Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc Natl Acad Sci USA 99:10370–10375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang HL, Tong L, Yang J (2004) Structural basis of the alpha(1)-beta subunit interaction of voltage-gated Ca2+ channels. Nature 429:675–680

    Article  CAS  PubMed  Google Scholar 

  34. Opatowsky Y, Chen CC, Campbell KP, Hirsch JA (2004) Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron 42:387–399

    Article  CAS  PubMed  Google Scholar 

  35. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Ren WL, DeCaen P, Yan CY, Tao X, Tang L, Wang JJ, Hasegawa K, Kumasaka T, He JH et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–U160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sula A, Booker J, Ng LCT, Naylor CE, DeCaen PG, Wallace BA (2017) The complete structure of an activated open sodium channel. Nat Commun 8:14205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang L, El-Din TMG, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61

    Article  PubMed  Google Scholar 

  39. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y (2015a) Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349:1182–1191

    Article  CAS  PubMed  Google Scholar 

  41. Bannister RA, Beam KG (2013) Ca(V)1.1: the atypical prototypical voltage-gated Ca(2)(+) channel. Biochim Biophys Acta 1828:1587–1597

    Article  CAS  PubMed  Google Scholar 

  42. Buraei Z, Yang J (2013) Structure and function of the beta subunit of voltage-gated Ca(2)(+) channels. Biochim Biophys Acta 1828:1530–1540

    Article  CAS  PubMed  Google Scholar 

  43. Curtis BM, Catterall WA (1984) Purification of the calcium-antagonist receptor of the voltage-sensitive calcium-channel from skeletal-muscle transverse tubules. Biochemistry 23:2113–2118

    Article  CAS  PubMed  Google Scholar 

  44. Florio V, Striessnig J, Catterall WA (1992) Purification and reconstitution of skeletal-muscle calcium channels. Methods Enzymol 207:529–546

    Article  CAS  PubMed  Google Scholar 

  45. Sharp AH, Imagawa T, Leung AT, Campbell KP (1987) Identification and characterization of the dihydropyridine-binding subunit of the skeletal-muscle dihydropyridine receptor. J Biol Chem 262:12309–12315

    CAS  PubMed  Google Scholar 

  46. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395

    Article  PubMed  Google Scholar 

  47. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    CAS  PubMed  Google Scholar 

  49. Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    Article  CAS  PubMed  Google Scholar 

  50. Pessah IN, Waterhouse AL, Casida JE (1985) The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun 128:449–456

    Article  CAS  PubMed  Google Scholar 

  51. Bhat MB, Zhao J, Takeshima H, Ma J (1997) Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor. Biophys J 73:1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Article  CAS  PubMed  Google Scholar 

  53. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235

    Article  CAS  PubMed  Google Scholar 

  54. Nakai J, Imagawa T, Hakamat Y, Shigekawa M, Takeshima H, Numa S (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett 271:169–177

    Article  CAS  PubMed  Google Scholar 

  55. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483

    CAS  PubMed  Google Scholar 

  56. Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 32:307–319

    Article  CAS  PubMed  Google Scholar 

  57. Bai XC, Yan Z, Wu JP, Li ZQ, Yan N (2016) The central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Res 26:995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J (2016) Structural basis for gating and activation of RyR1. Cell 167:145–157

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peng W, Shen HZ, Wu JP, Guo WT, Pan XJ, Wang RW, Chen SRW, Yan N (2016) Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354(6310):aah5324

    Article  PubMed  Google Scholar 

  60. Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T, Peng W, Yin CC, Li X, Scheres SH et al (2015b) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55

    Article  CAS  PubMed  Google Scholar 

  61. Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Article  CAS  PubMed  Google Scholar 

  62. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    Article  CAS  PubMed  Google Scholar 

  63. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Protasi F, Franzini-Armstrong C, Flucher BE (1997) Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J Cell Biol 137:859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    Article  CAS  PubMed  Google Scholar 

  66. Perez CF, Mukherjee S, Allen PD (2003) Amino acids 1-1,680 of ryanodine receptor type 1 hold critical determinants of skeletal type for excitation-contraction coupling. Role of divergence domain D2. J Biol Chem 278:39644–39652

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Yan, N., Yan, Z. (2017). Structure-Function Relationship of the Voltage-Gated Calcium Channel Cav1.1 Complex. In: Krebs, J. (eds) Membrane Dynamics and Calcium Signaling. Advances in Experimental Medicine and Biology, vol 981. Springer, Cham. https://doi.org/10.1007/978-3-319-55858-5_2

Download citation

Publish with us

Policies and ethics