Mitochondrial VDAC, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter in Ca2+ Dynamics and Signaling

  • Varda Shoshan-Barmatz
  • Soumasree De
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)


Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.


VDAC Mitochondria Ca2+ transport MCU NCLX Ca2+ homeostasis ER-mitochondria crosstalk 


  1. 1.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21CrossRefPubMedGoogle Scholar
  2. 2.
    Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131(4):505–523CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592(5):829–839CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578CrossRefPubMedGoogle Scholar
  5. 5.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedGoogle Scholar
  6. 6.
    Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cox DA, Matlib MA (1993) A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem 268(2):938–947PubMedGoogle Scholar
  8. 8.
    Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99(2):172–182CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28(5-6):285–296CrossRefPubMedGoogle Scholar
  10. 10.
    Xia HM, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamineinduced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820CrossRefPubMedGoogle Scholar
  11. 11.
    Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14(7):1267–1274CrossRefPubMedGoogle Scholar
  12. 12.
    Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16(13):3833–3841CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee B, Miles PD, Vargas L, Luan P, Glasco S, Kushnareva Y, Kornbrust ES, Grako KA, Wollheim CB, Maechler P, Olefsky JM, Anderson CM (2003) Inhibition of mitochondrial Na+-Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose-stimulated insulin secretion in rat pancreatic islets. Diabetes 52(4):965–973CrossRefPubMedGoogle Scholar
  14. 14.
    Martinovich GG, Golubeva EN, Martinovich IV, Cherenkevich SN (2012) Redox regulation of calcium signaling in cancer cells by ascorbic acid involving the mitochondrial electron transport chain. J Biophys 2012:1–6CrossRefGoogle Scholar
  15. 15.
    Williams GSB, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Nat Acad Sci 110(26):10479–10486CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3(3):1–16CrossRefGoogle Scholar
  17. 17.
    Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3–4):311–317CrossRefPubMedGoogle Scholar
  18. 18.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107(1):436–441CrossRefPubMedGoogle Scholar
  21. 21.
    Boyman L, Williams GS, Khananshvili D, Sekler I, Lederer WJ (2013) NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 59:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358(Pt 1):147–155CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159(4):613–624CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tan W, Colombini M (2007) VDAC closure increases calcium ion flux. Biochim Biophys Acta 1768(10):2510–2515CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G (2006) Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281(25):17347–17358CrossRefPubMedGoogle Scholar
  26. 26.
    De Pinto V, Guarino F, Guarnera A, Messina A, Reina S, Tomasello FM, Palermo V, Mazzoni C (2010) Characterization of human VDAC isoforms: a peculiar function for VDAC3? Biochim Biophys Acta 1797(6-7):1268–1275CrossRefPubMedGoogle Scholar
  27. 27.
    Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301(5632):513–517CrossRefPubMedGoogle Scholar
  28. 28.
    Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Asp Med 31(3):227–285CrossRefGoogle Scholar
  29. 29.
    Menzel Viviana A, Cassará MC, Benz R, De Pinto V, Messina A, Cunsolo V, Saletti R, Hinsch K-D, Hinsch E (2009) Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep 29(6):351–362CrossRefPubMedGoogle Scholar
  30. 30.
    Xu X, Decker W, Sampson MJ, Craigen WJ, Colombini M (1999) Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. J Membr Biol 170(2):89–102CrossRefPubMedGoogle Scholar
  31. 31.
    Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105(40):15370–15375CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Messina A, Reina S, Guarino F, De Pinto V (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818(6):1466–1476CrossRefPubMedGoogle Scholar
  33. 33.
    Shoshan-Barmatz V, Golan M (2012) Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19(5):714–735CrossRefPubMedGoogle Scholar
  34. 34.
    Ben-Hail D, Shoshan-Barmatz V (2014) Purification of VDAC1 from rat liver mitochondria. Cold Spring Harb Protoc 2014(1):94–99PubMedGoogle Scholar
  35. 35.
    Gincel D, Silberberg SD, Shoshan-Barmatz V (2000) Modulation of the voltage-dependent anion channel (VDAC) by glutamate1. J Bioenerg Biomembr 32(6):571–583CrossRefPubMedGoogle Scholar
  36. 36.
    Rostovtseva T, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72(5):1954–1962CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann N Y Acad Sci 341:552–563CrossRefPubMedGoogle Scholar
  38. 38.
    Benz R (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta 1197(2):167–196CrossRefPubMedGoogle Scholar
  39. 39.
    Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122(Pt 11):1906–1916CrossRefPubMedGoogle Scholar
  42. 42.
    Shi Y, Chen J, Weng C, Chen R, Zheng Y, Chen Q, Tang H (2003) Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochem Biophys Res Commun 305(4):989–996CrossRefPubMedGoogle Scholar
  43. 43.
    Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 287(27):23152–23161CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Arbel N, Shoshan-Barmatz V (2010) Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 285(9):6053–6062CrossRefPubMedGoogle Scholar
  45. 45.
    Geula S, Ben-Hail D, Shoshan-Barmatz V (2012) Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochem J 444(3):475–485CrossRefPubMedGoogle Scholar
  46. 46.
    Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V (2009) Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem 284(6):3946–3955CrossRefPubMedGoogle Scholar
  47. 47.
    Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 386(Pt 1):73–83CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Keinan N, Tyomkin D, Shoshan-Barmatz V (2010) Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 30(24):5698–5709CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zeth K, Meins T, Vonrhein C (2008) Approaching the structure of human VDAC1, a key molecule in mitochondrial cross-talk. J Bioenerg Biomembr 40(3):127–132CrossRefPubMedGoogle Scholar
  50. 50.
    Goncalves RP, Buzhynskyy N, Prima V, Sturgis JN, Scheuring S (2007) Supramolecular assembly of VDAC in native mitochondrial outer membranes. J Mol Biol 369(2):413–418CrossRefPubMedGoogle Scholar
  51. 51.
    Hoogenboom BW, Suda K, Engel A, Fotiadis D (2007) The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370(2):246–255CrossRefPubMedGoogle Scholar
  52. 52.
    Malia TJ, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46(2):514–525CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shoshan-Barmatz V, Keinan N, Zaid H (2008) Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr 40(3):183–191CrossRefPubMedGoogle Scholar
  54. 54.
    Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377(Pt 2):347–355CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ujwal R, Cascio D, Chaptal V, Ping P, Abramson J (2009) Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation. Channels (Austin) 3(3):167–170CrossRefGoogle Scholar
  56. 56.
    Raschle T, Hiller S, TY Y, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131(49):17777–17779CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12(1):24–34CrossRefPubMedGoogle Scholar
  58. 58.
    Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (2015) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta 1848(10 Pt B):2547–2575CrossRefPubMedGoogle Scholar
  59. 59.
    Kholmukhamedov EL, Czerny C, Lovelace G, Beeson KC, Baker T, Johnson CB, Pediaditakis P, Teplova VV, Tikunov A, MacDonald J, Lemasters JJ (2010) The role of the voltage-dependent anion channels in the outer membrane of mitochondria in the regulation of cellular metabolism. Biofizika 55(5):822–833PubMedGoogle Scholar
  60. 60.
    Ko JH, Gu W, Lim I, Zhou T, Bang H (2014) Expression profiling of mitochondrial voltage-dependent anion channel-1 associated genes predicts recurrence-free survival in human carcinomas. PLoS One 9(10):e110094CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gincel D, Vardi N, Shoshan-Barmatz V (2002) Retinal voltage-dependent anion channel: characterization and cellular localization. Invest Ophthalmol Vis Sci 43(7):2097–2104PubMedGoogle Scholar
  62. 62.
    Israelson A, Abu-Hamad S, Zaid H, Nahon E, Shoshan-Barmatz V (2007) Localization of the voltage-dependent anion channel-1 Ca2+-binding sites. Cell Calcium 41(3):235–244CrossRefPubMedGoogle Scholar
  63. 63.
    Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155(6):1003–1015CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19(2):267–273CrossRefPubMedGoogle Scholar
  65. 65.
    Huang H, Hu X, Eno CO, Zhao G, Li C, White C (2013) An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 288(27):19870–19881CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ben-Hail D, Shoshan-Barmatz V (2016) VDAC1-interacting anion transport inhibitors inhibit VDAC1 oligomerization and apoptosis. Biochim Biophys Acta 1863(7 Pt A):1612–1623CrossRefPubMedGoogle Scholar
  67. 67.
    Chen H, Gao W, Yang Y, Guo S, Wang H, Wang W, Zhang S, Zhou Q, Xu H, Yao J, Tian Z, Li B, Cao W, Zhang Z, Tian Y (2014) Inhibition of VDAC1 prevents Ca(2)(+)-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages. Apoptosis 19(12):1712–1726CrossRefPubMedGoogle Scholar
  68. 68.
    De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Ann Rev Biochem 85:161–192CrossRefPubMedGoogle Scholar
  69. 69.
    Mallilankaraman K, Doonan P, Cárdenas C, Chandramoorthy Harish C, Müller M, Miller R, Hoffman Nicholas E, Gandhirajan RK, Molgó J, Birnbaum Morris J, Rothberg Brad S, Mak D-On D, Foskett JK, Madesh M (2012) MICU1 Is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151(3):630–644CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467(7313):291–296CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mallilankaraman K, Cardenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenar T, Csordas G, Madireddi P, Yang J, Muller M, Miller R, Kolesar JE, Molgo J, Kaufman B, Hajnoczky G, Foskett JK, Madesh M (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14(12):1336–1343CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Koteliansky V, Mootha VK (2013) MICU2, a Paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8(2):e55785CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabo I, Rizzuto R (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sancak Y, Markhard AL, Kitami T, Kovács-Bogdán E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342(6164):1379–1382CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, Madesh M (2014) SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress–mediated cell death. Mol Biol Cell 25(6):936–947CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662CrossRefPubMedGoogle Scholar
  77. 77.
    Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280(19):18558–18561CrossRefPubMedGoogle Scholar
  78. 78.
    Gunter TE, Pfeiffer PD (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258(255 Pt 251):C755–C286CrossRefPubMedGoogle Scholar
  79. 79.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127–1155CrossRefPubMedGoogle Scholar
  80. 80.
    Foskett JK, Philipson B (2015) The mitochondrial Ca2 + uniporter complex. J Mol Cell Cardiol 78:3–8CrossRefPubMedGoogle Scholar
  81. 81.
    Kamer KJ, Sancak Y, Mootha VK (2014) The uniporter: from newly identified parts to function. Biochem Biophys Res Commun 449(4):370–372CrossRefPubMedGoogle Scholar
  82. 82.
    Lee Y, Min CK, Kim TG, Song HK, Lim Y, Kim D, Shin K, Kang M, Kang JY, Youn H-S, Lee J-G, An JY, Park KR, Lim JJ, Kim JH, Kim JH, Park ZY, Kim Y-S, Wang J, Kim DH, Eom SH (2015) Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep 16(10):1318–1333CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Csordás G, Golenár T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, Moffat C, Weaver D, Perez SF, Bogorad R, Koteliansky V, Adijanto J, Mootha VK, Hajnóczky G (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2+) uniporter. Cell Metab 17(6):976–987CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Qiu J, Tan Y-W, Hagenston AM, Martel M-A, Kneisel N, Skehel PA, Wyllie DJA, Bading H, Hardingham GE (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4(2034):1–12Google Scholar
  85. 85.
    Pozzan T, Magalhaes P, Rizzuto R (2000) The comeback of mitochondria to calcium signalling. Cell Calcium 28(5-6):279–283CrossRefPubMedGoogle Scholar
  86. 86.
    Xu S, Chisholm AD (2014) C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 31(1):48–60CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Alam MR, Groschner LN, Parichatikanond W, Kuo L, Bondarenko AI, Rost R, Waldeck-Weiermair M, Malli R, Graier WF (2012) Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J Biol Chem 287(41):34445–34454CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Nat Acad Sci 109(32):12986–12991CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Quan X, Nguyen TT, Choi S-K, Xu S, Das R, Cha S-K, Kim N, Han J, Wiederkehr A, Wollheim CB, Park K-S (2015) Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial ph gradient and metabolism-secretion coupling in insulin-releasing cells. J Biol Chem 290(7):4086–4096CrossRefPubMedGoogle Scholar
  91. 91.
    Rasmussen TP, Wu Y, Joiner M-LA, Koval OM, Wilson NR, Luczak ED, Wang Q, Chen B, Gao Z, Zhu Z, Wagner BA, Soto J, McCormick ML, Kutschke W, Weiss RM, Yu L, Boudreau RL, Abel ED, Zhan F, Spitz DR, Buettner GR, Song L-S, Zingman LV, Anderson ME (2015) Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences 112(29):9129–9134CrossRefGoogle Scholar
  92. 92.
    Murphy E, Pan X, Nguyen T, Liu J, Holmstrom KM, Finkel T (2014) Unresolved questions from the analysis of mice lacking MCU expression. Biochem Biophys Res Commun 449(4):384–385CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, York AJ, Zhang J, Bers DM, Molkentin JD (2015) The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep 12(1):15–22CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, Shanmughapriya S, Gao E, Jain M, Houser SR, Koch WJ, Cheung JY, Madesh M, Elrod JW (2015) The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep 12(1):23–34CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Holmström KM, Pan X, Liu JC, Menazza S, Liu J, Nguyen TT, Pan H, Parks RJ, Anderson S, Noguchi A, Springer D, Murphy E, Finkel T (2015) Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. J Mol Cell Cardiol 85:178–182CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mailloux RJ, Harper M-E (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51(6):1106–1115CrossRefPubMedGoogle Scholar
  97. 97.
    Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J Gen Physiol 139(6):445–454CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Jiang D, Zhao L, Clish CB, Clapham DE (2013) Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf-Hirschhorn syndrome. Proc Natl Acad Sci U S A 110(24):E2249–E2254CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Doonan PJ, Chandramoorthy HC, Hoffman NE, Zhang X, Cardenas C, Shanmughapriya S, Rajan S, Vallem S, Chen X, Foskett JK, Cheung JY, Houser SR, Madesh M (2014) LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation. FASEB J 28(11):4936–4949CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276(24):21482–21488CrossRefPubMedGoogle Scholar
  101. 101.
    Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717(1):1–10CrossRefPubMedGoogle Scholar
  102. 102.
    Altschafl BA, Beutner G, Sharma VK, Sheu SS, Valdivia HH (2007) The mitochondrial ryanodine receptor in rat heart: a pharmaco-kinetic profile. Biochim Biophys Acta 1768(7):1784–1795CrossRefPubMedGoogle Scholar
  103. 103.
    Ryu SY, Beutner G, Dirksen RT, Kinnally KW, Sheu SS (2010) Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 584(10):1948–1955CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Palty R, Hershfinkel M, Sekler I (2012) Molecular identity and functional properties of the mitochondrial Na+/Ca2+ Exchanger. J Biol Chem 287(38):31650–31657CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ad A, Satrústegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62(19):2204–2227Google Scholar
  106. 106.
    McCormack JG, Denton RM (1993) Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Dev Neurosci 15(3-5):165–173CrossRefPubMedGoogle Scholar
  107. 107.
    Sekler I (2015) Standing of giants shoulders the story of the mitochondrial Na+Ca2+ exchanger. Biochem Biophys Res Commun 460(1):50–52CrossRefPubMedGoogle Scholar
  108. 108.
    Murphy E, Eisner DA (2009) Regulation of intracellular and mitochondrial Na in health and disease. Circ Res 104(3):292–303CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem 279(24):25234–25240CrossRefPubMedGoogle Scholar
  110. 110.
    Murphy E, Cross H, Steenbergen C (1999) Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res 84(12):1469–1470CrossRefPubMedGoogle Scholar
  111. 111.
    Babsky A, Doliba N, Doliba N, Savchenko A, Wehrli S, Osbakken M (2001) Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med 226(6):543–551CrossRefGoogle Scholar
  112. 112.
    Zu Y, Wan L-J, Cui S-Y, Gong Y-P, Li C-L (2015) The mitochondrial Na(+)/Ca(2+) exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells. J Geriatr Cardiol 12(3):270–278PubMedPubMedCentralGoogle Scholar
  113. 113.
    Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12(5):835–840CrossRefPubMedGoogle Scholar
  114. 114.
    Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233CrossRefPubMedGoogle Scholar
  115. 115.
    Shoshan-Barmatz V, Gincel D (2003) The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39(3):279–292CrossRefPubMedGoogle Scholar
  116. 116.
    Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813(4):616–622CrossRefPubMedGoogle Scholar
  117. 117.
    Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: an update. Biochim Biophys Acta 1863(10):2515–2530CrossRefPubMedGoogle Scholar
  118. 118.
    Hurst S, Hoek J, Sheu S-S (2016) Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 49:1–21Google Scholar
  119. 119.
    Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316CrossRefPubMedGoogle Scholar
  120. 120.
    Nichols BJ, Denton RM (1995) Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions. Mol Cell Biochem 149-150:203–212CrossRefPubMedGoogle Scholar
  121. 121.
    Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288(15):10750–10758CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278(2):C423–C435CrossRefPubMedGoogle Scholar
  124. 124.
    Gellerich FN, Gizatullina Z, Arandarcikaite O, Jerzembek D, Vielhaber S, Seppet E, Striggow F (2009) Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand. PLoS One 4(12):e8181CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87(1):29–67CrossRefPubMedGoogle Scholar
  126. 126.
    Chalmers S, McCarron JG (2008) The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci 121(Pt 1):75–85CrossRefPubMedGoogle Scholar
  127. 127.
    Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590(12):2845–2871CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Yang R, Lirussi D, Thornton TM, Jelley-Gibbs DM, Diehl SA, Case LK, Madesh M, Taatjes DJ, Teuscher C, Haynes L, Rincón M (2015) Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. eLife 4:e06376PubMedCentralGoogle Scholar
  129. 129.
    Bajić A, Spasić M, Andjus PR, Savić D, Parabucki A, Nikolić-Kokić A, Spasojević I (2013) Fluctuating vs. continuous exposure to H2O2: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia. PLoS ONE 8(10):e76383CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A 103(15):5787–5792CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Arif T, Vasilkovsky L, Refaely Y, Konson A, Shoshan-Barmatz V (2014) Silencing VDAC1 expression by siRNA inhibits cancer cell proliferation and tumor growth in vivo. Mol Ther Nucleic Acids 29(3):e159CrossRefGoogle Scholar
  132. 132.
    Anis Y (2006) Involvement of Ca2+ in the apoptotic process – friends or foes. Pathways 2:2–7Google Scholar
  133. 133.
    Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486CrossRefPubMedGoogle Scholar
  134. 134.
    Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V (2013) The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim Biophys Acta 1833(7):1745–1754CrossRefPubMedGoogle Scholar
  135. 135.
    Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V (2014) Ca2+- mediated regulation of VDAC1 expression levels is associated with cell death induction. Biochim Biophys Acta 1843(10):2270–2281CrossRefPubMedGoogle Scholar
  136. 136.
    Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8(2):119–130CrossRefPubMedGoogle Scholar
  137. 137.
    Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52(1):36–43CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Sasaki K, Donthamsetty R, Heldak M, Cho YE, Scott BT, Makino A (2012) VDAC: old protein with new roles in diabetes. Am J Physiol Cell Physiol 303(10):C1055–C1060CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Truong AH, Murugesan S, Youssef KD, Makino A (2016) Mitochondrial ion channels in metabolic disease. In: Levitan PI, Dopico MDPMA (eds) Vascular ion channels in physiology and disease. Springer, Cham, pp 397–419CrossRefGoogle Scholar
  140. 140.
    Ben-Hail D, Begas-Shvartz R, Shalev M, Shteinfer-Kuzmine A, Gruzman A, Reina S, De Pinto V, Shoshan-Barmatz V (2016) Novel compounds targeting the mitochondrial protein VDAC1 inhibit apoptosis and protect against mitochondria dysfunction. J Biol Chem 291(48):24986–25003CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Huang H, Shah K, Bradbury NA, Li C, White C (2014) Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis 23(5):e1482CrossRefGoogle Scholar
  142. 142.
    Fouque A, Lepvrier E, Debure L, Gouriou Y, Malleter M, Delcroix V, Ovize M, Ducret T, Li C, Hammadi M, Vacher P, Legembre P (2016) The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca2+ flux from the endoplasmic reticulum to mitochondria. Cell Death Differ 23(10):1702–1716CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton (Hoboken) 70(7):360–384CrossRefGoogle Scholar
  144. 144.
    Kusano H, Shimizu S, Koya RC, Fujita H, Kamada S, Kuzumaki N, Tsujimoto Y (2000) Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19(42):4807–4814CrossRefPubMedGoogle Scholar
  145. 145.
    Qiao H, McMillan JR (2007) Gelsolin segment 5 inhibits HIV-induced T-cell apoptosis via Vpr-binding to VDAC. FEBS Lett 581(3):535–540CrossRefPubMedGoogle Scholar
  146. 146.
    Sun J, Liao JK (2002) Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel. Proc Natl Acad Sci U S A 99(20):13108–13113CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Feng X, Ching CB, Chen WN (2012) EBV up-regulates cytochrome c through VDAC1 regulations and decreases the release of cytoplasmic Ca2+ in the NPC cell line. Cell Biol Int 36(8):733–738CrossRefPubMedGoogle Scholar
  148. 148.
    Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61CrossRefPubMedGoogle Scholar
  149. 149.
    Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529(1):37–47CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Shoshan-Barmatz V, Zalk R, Gincel D, Vardi N (2004) Subcellular localization of VDAC in mitochondria and ER in the cerebellum. Biochim Biophys Acta 1657(2-3):105–114CrossRefPubMedGoogle Scholar
  152. 152.
    Krols M, Bultynck G, Janssens S (2016) ER-Mitochondria contact sites: A new regulator of cellular calcium flux comes into play. J Cell Biol 214(4):367–370CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610CrossRefPubMedGoogle Scholar
  154. 154.
    De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau K-F, Ackerley S, Warley A, Shaw CE, Miller CCJ (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21(6):1299–1311CrossRefPubMedGoogle Scholar
  155. 155.
    Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30(3):556–568CrossRefPubMedGoogle Scholar
  156. 156.
    Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    de Brito OM, Scorrano L (2009) Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion 9(3):222–226CrossRefPubMedGoogle Scholar
  158. 158.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766CrossRefPubMedGoogle Scholar
  159. 159.
    Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269(44):27494–27502PubMedGoogle Scholar
  160. 160.
    Garofalo T, Matarrese P, Manganelli V, Marconi M, Tinari A, Gambardella L, Faggioni A, Misasi R, Sorice M, Malorni W (2016) Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy 12(6):917–935CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Raturi A, Gutierrez T, Ortiz-Sandoval C, Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, Gesson K, Ourdev D, Lou PH, Lucchinetti E, Tahbaz N, Zaugg M, Baksh S, Ballanyi K, Simmen T (2016) TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol 214(4):433–444CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5(12):1051–1061CrossRefPubMedGoogle Scholar
  163. 163.
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Marchi S, Giorgi C, Oparka M, Duszynski J, Wieckowski MR, Pinton P (2014) Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Mol Cell Oncol 1(2):e956469CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, Bultynck G (2014) A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta 1843(10):2240–2252CrossRefPubMedGoogle Scholar
  166. 166.
    Thomenius MJ, Distelhorst CW (2003) Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116(Pt 22):4493–4499CrossRefPubMedGoogle Scholar
  167. 167.
    Bittremieux M, Parys JB, Pinton P, Bultynck G (2016) ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca(2+) signaling. Biochim Biophys Acta 1863(6 Pt B):1364–1378CrossRefPubMedGoogle Scholar
  168. 168.
    Wolff S, Erster S, Palacios G, Moll UM (2008) p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res 18(7):733–744CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Banerjee J, Ghosh S (2004) Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Biophys Res Commun 323(1):310–314CrossRefPubMedGoogle Scholar
  170. 170.
    Shimizu S, Tsujimoto Y (2000) Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci U S A 97(2):577–582CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Bargaje R, Gupta S, Sarkeshik A, Park R, Xu T, Sarkar M, Halimani M, Roy SS, Yates J, Pillai B (2012) Identification of novel targets for miR-29a using miRNA proteomics. PLoS One 7(8):e43243CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Li QQ, Zhang L, Wan HY, Liu M, Li X, Tang H (2015) CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells. Oncotarget 6(33):34924–34940PubMedPubMedCentralGoogle Scholar
  173. 173.
    Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, Bononi A, Corra F, Giorgi C, De Marchi E, Poletti F, Gafa R, Lanza G, Negrini M, Rizzuto R, Pinton P (2013) Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 23(1):58–63CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Wang F, Qiang Y, Zhu L, Jiang Y, Wang Y, Shao X, Yin L, Chen J, Chen Z (2016) MicroRNA-7 downregulates the oncogene VDAC1 to influence hepatocellular carcinoma proliferation and metastasis. Tumour Biol 37(8):10235–10246CrossRefPubMedGoogle Scholar
  175. 175.
    Roshan R, Shridhar S, Sarangdhar MA, Banik A, Chawla M, Garg M, Singh VP, Pillai B (2014) Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA 20(8):1287–1297CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Stary CM, Sun X, Ouyang Y, Li L, Giffard RG (2016) miR-29a differentially regulates cell survival in astrocytes from cornu ammonis 1 and dentate gyrus by targeting VDAC1. Mitochondrion 30:248–254CrossRefPubMedGoogle Scholar
  177. 177.
    Perez-Gracia E, Torrejon-Escribano B, Ferrer I (2008) Dystrophic neurites of senile plaques in Alzheimer’s disease are deficient in cytochrome c oxidase. Acta Neuropathol 116(3):261–268CrossRefPubMedGoogle Scholar
  178. 178.
    Godbole A, Varghese J, Sarin A, Mathew MK (2003) VDAC is a conserved element of death pathways in plant and animal systems. Biochim Biophys Acta 1642(1-2):87–96CrossRefPubMedGoogle Scholar
  179. 179.
    AJ L, Dong CW, CS D, Zhang QY (2007) Characterization and expression analysis of Paralichthys olivaceus voltage-dependent anion channel (VDAC) gene in response to virus infection. Fish Shellfish Immunol 23(3):601–613CrossRefGoogle Scholar
  180. 180.
    Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12(7):751–760CrossRefPubMedGoogle Scholar
  181. 181.
    Zhang G, Jiang G, Wang C, Zhong K, Zhang J, Xue Q, Li X, Jin H, Li B (2016) Decreased expression of microRNA-320a promotes proliferation and invasion of non-small cell lung cancer cells by increasing VDAC1 expression. Oncotarget 7(31):49470–49480PubMedPubMedCentralGoogle Scholar
  182. 182.
    Fatima M, Prajapati B, Saleem K, Kumari R, Mohindar Singh Singal C, Seth P (2017) Novel insights into role of miR-320a-VDAC1 axis in astrocyte-mediated neuronal damage in neuroAIDS. Glia 65(2):250–263CrossRefPubMedGoogle Scholar
  183. 183.
    Chaudhuri AD, Choi DC, Kabaria S, Tran A, Junn E (2016) MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J Biol Chem 291(12):6483–6493CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Li X, Wang H, Yao B, Xu W, Chen J, Zhou X (2016) lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep 6:36340CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Manczak M, Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet 21(23):5131–5146CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Cuadrado-Tejedor M, Vilarino M, Cabodevilla F, Del Rio J, Frechilla D, Perez-Mediavilla A (2011) Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer’s disease transgenic mice: an insight into the pathogenic effects of amyloid-beta. J Alzheimer’s Dis 23(2):195–206Google Scholar
  187. 187.
    Liao Z, Liu D, Tang L, Yin D, Yin S, Lai S, Yao J, He M (2015) Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation. Mol Nutr Food Res 59(3):454–464CrossRefPubMedGoogle Scholar
  188. 188.
    Ahmed M, Muhammed SJ, Kessler B, Salehi A (2010) Mitochondrial proteome analysis reveals altered expression of voltage dependent anion channels in pancreatic beta-cells exposed to high glucose. Islets 2(5):283–292CrossRefPubMedGoogle Scholar
  189. 189.
    Gong D, Chen X, Middleditch M, Huang L, Vazhoor Amarsingh G, Reddy S, Lu J, Zhang S, Ruggiero K, Phillips AR, Cooper GJ (2009) Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats. Proteomics 9(18):4309–4320CrossRefPubMedGoogle Scholar
  190. 190.
    Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, Li J, Xu L, Chen YH (2015) MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci 16(3):5420–5433CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Hong Z, Chen KH, Dasgupta A, Potus F, Dunham-Snary K, Bonnet S, Tian L, Fu J, Breuils-Bonnet S, Provencher S, Wu D, Mewburn J, Ormiston ML, Archer SL (2016) miR-138 and miR-25 downregulate MCU, causing pulmonary arterial hypertension’s cancer phenotype. Am J Respir Crit Care Med 195(4):515–529CrossRefGoogle Scholar
  192. 192.
    Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, Ridky Todd W, Foskett JK (2016) Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep 14(10):2313–2324CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353(1–2):128–137CrossRefPubMedGoogle Scholar
  194. 194.
    Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann Claus W, Schoonjans K, Pozzan T, Spät A, Wollheim Claes B (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13(5):601–611CrossRefPubMedGoogle Scholar
  195. 195.
    Jitrapakdee S, Wutthisathapornchai A, Wallace JC, MacDonald MJ (2010) Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6):1019–1032CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Wang C-H, Tsai T-F, Wei Y-H (2015) Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in insulin insensitivity of mammalian cells. Ann N Y Acad Sci 1350(1):66–76CrossRefPubMedGoogle Scholar
  197. 197.
    Rimessi A, Patergnani S, Bonora M, Wieckowski MR, Pinton P (2015) Mitochondrial Ca(2+) remodeling is a prime factor in oncogenic behavior. Front Oncol 5:143CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Park J, Li Y, Kim S-H, Yang K-J, Kong G, Shrestha R, Tran Q, Park KA, Jeon J, Hur GM, Lee C-H, Kim D-H, Park J (2014) New players in high fat diet-induced obesity: LETM1 and CTMP. Metabolism 63(3):318–327CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Life Sciences and the National Institute for Biotechnology in the NegevBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations