Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains

  • Riccardo Filadi
  • Emy Basso
  • Konstantinos Lefkimmiatis
  • Tullio Pozzan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)

Abstract

A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.

Keywords

Ca2+ signaling cAMP ATP Second messengers Microdomains cAMP sensors Ca2+ sensors ER Mitochondria PKA PDE 

Notes

Acknowledgments

The original work by the Authors has been supported by grants from the Italian Ministry of University and Research (MIUR), by Telethon Foundation, by Cariparo Foundation, by the National Research Council (CNR) and by the University of Padova to TP. We are grateful to Dr. P. Magalhaes for critically reading the manuscript.

References

  1. 1.
    Petersen OH (2012) Specific mitochondrial functions in separate sub-cellular domains of pancreatic acinar cells. Pflugers Arch 464(1):77–87. https://doi.org/10.1007/s00424-012-1099-6CrossRefPubMedGoogle Scholar
  2. 2.
    Lioudyno MI, Kozak JA, Penna A et al (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105(6):2011–2016. https://doi.org/10.1073/pnas.0706122105CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40(5–6):405–412CrossRefPubMedGoogle Scholar
  4. 4.
    Samanta K, Parekh AB (2016) Spatial Ca2+ profiling: decrypting the universal cytosolic Ca2+ oscillation. J Physiol 595(10):3053–3062. https://doi.org/10.1113/JP272860CrossRefPubMedGoogle Scholar
  5. 5.
    Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408CrossRefPubMedGoogle Scholar
  7. 7.
    Heidelberger R, Heinemann C, Neher E et al (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371(6497):513–515CrossRefPubMedGoogle Scholar
  8. 8.
    Beutner D, Voets T, Neher E et al (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29(3):681–690CrossRefPubMedGoogle Scholar
  9. 9.
    Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10(11):3664–3684PubMedGoogle Scholar
  10. 10.
    Robitaille R, Adler EM, Charlton MP (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5(6):773–779CrossRefPubMedGoogle Scholar
  11. 11.
    Prakriya M, Solaro CR, Lingle CJ (1996) [Ca2+]i elevations detected by BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores in rat chromaffin cells. J Neurosci 16(14):4344–4359PubMedGoogle Scholar
  12. 12.
    Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17(18):6961–6973PubMedGoogle Scholar
  13. 13.
    Carafoli E, Santella L, Branca D et al (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36(2):107–260CrossRefPubMedGoogle Scholar
  14. 14.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529CrossRefPubMedGoogle Scholar
  15. 15.
    Eggermann E, Jonas P (2011) How the ‘slow’ Ca(2+) buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci 15(1):20–22. https://doi.org/10.1038/nn.3002CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mori MX, Erickson MG, Yue DT (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304(5669):432–435. https://doi.org/10.1126/science.1093490CrossRefPubMedGoogle Scholar
  17. 17.
    Nagerl UV, Novo D, Mody I et al (2000) Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+). Biophys J 79(6):3009–3018. https://doi.org/10.1016/S0006-3495(00)76537-4CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Faas GC, Schwaller B, Vergara JL et al (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5(11):e311. https://doi.org/10.1371/journal.pbio.0050311CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Faas GC, Raghavachari S, Lisman JE et al (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14(3):301–304. https://doi.org/10.1038/nn.2746CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64(1):77–91. https://doi.org/10.1016/S0006-3495(93)81342-0CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Augustine GJ, Neher E (1992) Neuronal Ca2+ signalling takes the local route. Curr Opin Neurobiol 2(3):302–307CrossRefPubMedGoogle Scholar
  22. 22.
    Strautman AF, Cork RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci 10(11):3564–3575PubMedGoogle Scholar
  23. 23.
    Gabso M, Neher E, Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18(3):473–481CrossRefPubMedGoogle Scholar
  24. 24.
    Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33(3):439–452CrossRefPubMedGoogle Scholar
  25. 25.
    Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40(2):331–346CrossRefPubMedGoogle Scholar
  26. 26.
    Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22(4):255–268CrossRefPubMedGoogle Scholar
  27. 27.
    Adler EM, Augustine GJ, Duffy SN et al (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 11(6):1496–1507PubMedGoogle Scholar
  28. 28.
    Plant TD, Standen NB, Ward TA (1983) The effects of injection of calcium ions and calcium chelators on calcium channel inactivation in Helix neurones. J Physiol 334:189–212CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tay LH, Dick IE, Yang W et al (2012) Nanodomain Ca(2)(+) of Ca(2)(+) channels detected by a tethered genetically encoded Ca(2)(+) sensor. Nat Commun 3:778. https://doi.org/10.1038/ncomms1777CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. https://doi.org/10.1038/415198aCrossRefPubMedGoogle Scholar
  31. 31.
    Hong T, Yang H, Zhang SS et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20(6):624–632. https://doi.org/10.1038/nm.3543CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fu Y, Shaw SA, Naami R et al (2016) Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation 133(4):388–397. https://doi.org/10.1161/CIRCULATIONAHA.115.018535CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sacconi L, Ferrantini C, Lotti J et al (2012) Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proc Natl Acad Sci USA 109(15):5815–5819. https://doi.org/10.1073/pnas.1120188109CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hayashi T, Martone ME, Yu Z et al (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122(Pt 7):1005–1013. https://doi.org/10.1242/jcs.028175CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Takagishi Y, Rothery S, Issberner J et al (1997) Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. J Electron Microsc (Tokyo) 46(2):165–170CrossRefGoogle Scholar
  36. 36.
    Takagishi Y, Yasui K, Severs NJ et al (2000) Species-specific difference in distribution of voltage-gated L-type Ca(2+) channels of cardiac myocytes. Am J Physiol Cell Physiol 279(6):C1963–C1969CrossRefPubMedGoogle Scholar
  37. 37.
    Glukhov AV, Balycheva M, Sanchez-Alonso JL et al (2015) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132(25):2372–2384. https://doi.org/10.1161/CIRCULATIONAHA.115.018131CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Quintana A, Schwindling C, Wenning AS et al (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci USA 104(36):14418–14423. https://doi.org/10.1073/pnas.0703126104CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Quintana A, Pasche M, Junker C et al (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30(19):3895–3912. https://doi.org/10.1038/emboj.2011.289CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tarlowe MH, Kannan KB, Itagaki K et al (2003) Inflammatory chemoreceptor cross-talk suppresses leukotriene B4 receptor 1-mediated neutrophil calcium mobilization and chemotaxis after trauma. J Immunol 171(4):2066–2073CrossRefPubMedGoogle Scholar
  42. 42.
    Levin KR, Page E (1980) Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46(2):244–255CrossRefPubMedGoogle Scholar
  43. 43.
    Murphy RM, Mollica JP, Lamb GD (2009) Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 315(6):1015–1028. https://doi.org/10.1016/j.yexcr.2008.11.022CrossRefPubMedGoogle Scholar
  44. 44.
    Zampighi G, Vergara J, Ramon F (1975) On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? J Cell Biol 64(3):734–740CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Balijepalli RC, Foell JD, Hall DD et al (2006) Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci USA 103(19):7500–7505. https://doi.org/10.1073/pnas.0503465103CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wright PT, Nikolaev VO, O’Hara T et al (2014) Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 67:38–48. https://doi.org/10.1016/j.yjmcc.2013.12.003CrossRefPubMedGoogle Scholar
  47. 47.
    Balijepalli RC, Kamp TJ (2008) Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol 98(2–3):149–160. https://doi.org/10.1016/j.pbiomolbio.2009.01.012CrossRefPubMedGoogle Scholar
  48. 48.
    Makarewich CA, Correll RN, Gao H et al (2012) A caveolae-targeted L-type Ca(2)+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674. https://doi.org/10.1161/CIRCRESAHA.111.264028CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52(2):376–387. https://doi.org/10.1016/j.yjmcc.2011.08.014CrossRefPubMedGoogle Scholar
  50. 50.
    Hong T, Shaw RM (2017) Cardiac T-tubule microanatomy and function. Physiol Rev 97(1):227–252. https://doi.org/10.1152/physrev.00037.2015CrossRefPubMedGoogle Scholar
  51. 51.
    Colella M, Grisan F, Robert V et al (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA 105(8):2859–2864. https://doi.org/10.1073/pnas.0712316105CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dolmetsch RE, Lewis RS, Goodnow CC et al (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858CrossRefPubMedGoogle Scholar
  53. 53.
    Shan J, Betzenhauser MJ, Kushnir A et al (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120(12):4375–4387. https://doi.org/10.1172/JCI37649CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhao W, Yuan Q, Qian J et al (2006) The presence of Lys27 instead of Asn27 in human phospholamban promotes sarcoplasmic reticulum Ca2+-ATPase superinhibition and cardiac remodeling. Circulation 113(7):995–1004. https://doi.org/10.1161/CIRCULATIONAHA.105.583351CrossRefPubMedGoogle Scholar
  55. 55.
    Jordan MC, Henderson SA, Han T et al (2010) Myocardial function with reduced expression of the sodium-calcium exchanger. J Card Fail 16(9):786–796. https://doi.org/10.1016/j.cardfail.2010.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nakamura TY, Iwata Y, Arai Y et al (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103(8):891–899. https://doi.org/10.1161/CIRCRESAHA.108.175141CrossRefPubMedGoogle Scholar
  57. 57.
    Guo A, Cala SE, Song LS (2012) Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 287(20):16670–16680. https://doi.org/10.1074/jbc.M112.340927CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Petersen OH, Gerasimenko OV, Gerasimenko JV et al (1998) The calcium store in the nuclear envelope. Cell Calcium 23(2-3):87–90CrossRefPubMedGoogle Scholar
  59. 59.
    Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99(3):283–291. https://doi.org/10.1161/01.RES.0000233386.02708.72CrossRefPubMedGoogle Scholar
  60. 60.
    Guatimosim S, Amaya MJ, Guerra MT et al (2008) Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium 44(2):230–242. https://doi.org/10.1016/j.ceca.2007.11.016CrossRefPubMedGoogle Scholar
  61. 61.
    Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Investig 116(3):675–682CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zima AV, Bare DJ, Mignery GA et al (2007) IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584(Pt 2):601–611CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Goonasekera SA, Molkentin JD (2012) Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte. J Mol Cell Cardiol 52(2):317–322. https://doi.org/10.1016/j.yjmcc.2011.05.001CrossRefPubMedGoogle Scholar
  64. 64.
    Ibarra C, Vicencio JM, Varas-Godoy M et al (2014) An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling. J Mol Cell Cardiol 75:40–48. https://doi.org/10.1016/j.yjmcc.2014.06.015CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47:1744–1750CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    De Stefani D, Raffaello A, Teardo E et al (2011a) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. https://doi.org/10.1038/nature10230CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Baughman JM, Perocchi F, Girgis HS et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216CrossRefPubMedGoogle Scholar
  69. 69.
    Mammucari C, Raffaello A, Vecellio Reane D et al (2016) Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochim Biophys Acta 1863(10):2457–2464. https://doi.org/10.1016/j.bbamcr.2016.03.006CrossRefPubMedGoogle Scholar
  70. 70.
    Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16(9):545–553. https://doi.org/10.1038/nrm4039CrossRefPubMedGoogle Scholar
  71. 71.
    Pendin D, Greotti E, Pozzan T (2014a) The elusive importance of being a mitochondrial Ca2+ uniporter. Cell Calcium 55(3):139–145. https://doi.org/10.1016/j.ceca.2014.02.008CrossRefPubMedGoogle Scholar
  72. 72.
    Rizzuto R, Simpson AW, Brini M et al (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327CrossRefPubMedGoogle Scholar
  73. 73.
    Pendin D, Greotti E, Filadi R et al (2014b) Spying on organelle Ca2+ in living cells: the mitochondrial point of view. J Endocrinol Invest 38(1):39–45. https://doi.org/10.1007/s40618-014-0178-2CrossRefPubMedGoogle Scholar
  74. 74.
    Pendin D, Greotti E, Lefkimmiatis K et al (2017) Exploring cells with targeted biosensors. J Gen Physiol 149(1):1–36. https://doi.org/10.1085/jgp.201611654CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766CrossRefPubMedGoogle Scholar
  76. 76.
    Csordás G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Giacomello M, Drago I, Bortolozzi M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290. https://doi.org/10.1016/j.molcel.2010.04.003CrossRefPubMedGoogle Scholar
  78. 78.
    Csordas G, Varnai P, Golenar T et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Filadi R, Pozzan T (2015) Generation and functions of second messengers microdomains. Cell Calcium 58(4):405–414. https://doi.org/10.1016/j.ceca.2015.03.007CrossRefPubMedGoogle Scholar
  80. 80.
    Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium 62:1–15. https://doi.org/10.1016/j.ceca.2017.01.003CrossRefPubMedGoogle Scholar
  81. 81.
    Messina A, Reina S, Guarino F et al (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818(6):1466–1476. https://doi.org/10.1016/j.bbamem.2011.10.005CrossRefPubMedGoogle Scholar
  82. 82.
    Rapizzi E, Pinton P, Szabadkai G et al (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159(4):613–624CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    De Stefani D, Bononi A, Romagnoli A et al (2011b) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19(2):267–273. https://doi.org/10.1038/cdd.2011.92CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Filadi R, Greotti E, Turacchio G et al (2016) Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep 15(10):2226–2238CrossRefPubMedGoogle Scholar
  85. 85.
    Szabadkai G, Bianchi K, Varnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    De Marchi U, Castelbou C, Demaurex N (2011) Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 286(37):32533–32541CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Landolfi B, Curci S, Debellis L et al (1998) Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells. J Cell Biol 142:1235–1243CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Foskett JK, White C, Cheung KH et al (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Vais H, Foskett JK, Ullah G et al (2012) Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. J Gen Physiol 140(6):697–716. https://doi.org/10.1085/jgp.201210804CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ivanova H, Vervliet T, Missiaen L et al (2014) Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 1843(10):2164–2183. https://doi.org/10.1016/j.bbamcr.2014.03.007CrossRefPubMedGoogle Scholar
  91. 91.
    Perkins G, Renken C, Martone ME et al (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119(3):260–272CrossRefPubMedGoogle Scholar
  92. 92.
    del Arco A, Satrustegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279(23):24701–24713. https://doi.org/10.1074/jbc.M401417200CrossRefPubMedGoogle Scholar
  93. 93.
    Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87(1):29–67CrossRefPubMedGoogle Scholar
  94. 94.
    De La Fuente S, Fernandez-Sanz C, Vail C et al (2016) Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle. J Biol Chem 291(44):23343–23362. https://doi.org/10.1074/jbc.M116.755496CrossRefGoogle Scholar
  95. 95.
    Garcia-Perez C, Schneider TG, Hajnoczky G et al (2011) Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points. Am J Physiol Heart Circ Physiol 301(5):H1907–H1915. https://doi.org/10.1152/ajpheart.00397.2011CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Booth DM, Enyedi B, Geiszt M et al (2016) Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol Cell 63(2):240–248CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Giorgi C, Bonora M, Sorrentino G et al (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 112(6):1779–1784. https://doi.org/10.1073/pnas.1410723112CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Raffaello A, De Stefani D, Sabbadin D et al (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376. https://doi.org/10.1038/emboj.2013.157CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Plovanich M, Bogorad RL, Sancak Y et al (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8(2):e55785. https://doi.org/10.1371/journal.pone.0055785 PONE-D-12-28515CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Westrate LM, Lee JE, Prinz WA et al (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84:791–811. https://doi.org/10.1146/annurev-biochem-072711-163501CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang H, Hu J (2016) Shaping the endoplasmic reticulum into a social network. Trends Cell Biol 26(12):934–943. https://doi.org/10.1016/j.tcb.2016.06.002CrossRefPubMedGoogle Scholar
  102. 102.
    Montero M, Alvarez J, Scheenen WJJ et al (1997) Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J Cell Biol 139:601–611CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    de la Fuente S, Fonteriz RI, Montero M et al (2013) Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 54(1):37–45. https://doi.org/10.1016/j.ceca.2013.04.001CrossRefPubMedGoogle Scholar
  104. 104.
    Aulestia FJ, Redondo PC, Rodriguez-Garcia A et al (2011) Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochem J 435(1):227–235CrossRefPubMedGoogle Scholar
  105. 105.
    Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036CrossRefPubMedGoogle Scholar
  106. 106.
    Villa A, Podini P, Panzeri MC et al (1993) The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol 121(5):1041–1051CrossRefPubMedGoogle Scholar
  107. 107.
    Villa A, Podini P, Clegg DO et al (1991) Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J Cell Biol 113(4):779–791CrossRefPubMedGoogle Scholar
  108. 108.
    Meldolesi J, Pozzan T (1998) The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 142(6):1395–1398CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Myhill N, Lynes EM, Nanji JA et al (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19(7):2777–2788CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Lynes EM, Bui M, Yap MC et al (2012) Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J 31(2):457–470CrossRefPubMedGoogle Scholar
  111. 111.
    Bastianutto C, Clementi E, Codazzi F et al (1995) Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130:847–855CrossRefPubMedGoogle Scholar
  112. 112.
    Mery L, Mesaeli N, Michalak M et al (1996) Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 271:9332–9339CrossRefPubMedGoogle Scholar
  113. 113.
    de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610CrossRefPubMedGoogle Scholar
  114. 114.
    Orso G, Pendin D, Liu S et al (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460(7258):978–983. https://doi.org/10.1038/nature08280CrossRefPubMedGoogle Scholar
  115. 115.
    Sobie EA, Dilly KW, dos Santos CJ et al (2002) Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83(1):59–78CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Brochet DX, Yang D, Di Maio A et al (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA 102(8):3099–3104. https://doi.org/10.1073/pnas.0500059102CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Suzuki J, Kanemaru K, Ishii K et al (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153. https://doi.org/10.1038/ncomms5153PubMedPubMedCentralGoogle Scholar
  118. 118.
    Mogami H, Nakano K, Tepikin AV et al (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88(1):49–55CrossRefPubMedGoogle Scholar
  119. 119.
    Thorn P, Lawrie AM, Smith PM et al (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74(4):661–668CrossRefPubMedGoogle Scholar
  120. 120.
    de Juan-Sanz J, Holt GT, Schreiter ER et al (2017) Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93(4):867–881 e866. https://doi.org/10.1016/j.neuron.2017.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Lissandron V, Podini P, Pizzo P et al (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107(20):9198–9203. https://doi.org/10.1073/pnas.1004702107CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wong AK, Capitanio P, Lissandron V et al (2013) Heterogeneity of Ca2+ handling among and within Golgi compartments. J Mol Cell Biol 5(4):266–276. https://doi.org/10.1093/jmcb/mjt024CrossRefPubMedGoogle Scholar
  123. 123.
    Filippin L, Magalhães PJ, Di Benedetto G et al (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234CrossRefPubMedGoogle Scholar
  124. 124.
    Montero M, Alonso MT, Carnicero E et al (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61CrossRefPubMedGoogle Scholar
  125. 125.
    Szabadkai G, Simoni AM, Chami M et al (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16(1):59–68CrossRefPubMedGoogle Scholar
  126. 126.
    Lefkimmiatis K, Zaccolo M (2014) cAMP signaling in subcellular compartments. Pharmacol Ther 143(3):295–304. https://doi.org/10.1016/j.pharmthera.2014.03.008CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119PubMedGoogle Scholar
  128. 128.
    Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258(17):10233–10239PubMedGoogle Scholar
  129. 129.
    Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Rich TC, Fagan KA, Nakata H et al (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116(2):147–161CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715CrossRefPubMedGoogle Scholar
  132. 132.
    Nikolaev VO, Bunemann M, Schmitteckert E et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. https://doi.org/10.1161/01.RES.0000250046.69918.d5CrossRefPubMedGoogle Scholar
  133. 133.
    Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103(8):836–844CrossRefPubMedGoogle Scholar
  134. 134.
    Jiang JY, Falcone JL, Curci S et al (2017) Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 64:47–56. https://doi.org/10.1016/j.ceca.2017.02.010CrossRefPubMedGoogle Scholar
  135. 135.
    Dworkin M, Keller KH (1977) Solubility and diffusion coefficient of adenosine 3′:5′-monophosphate. J Biol Chem 252(3):864–865PubMedGoogle Scholar
  136. 136.
    Nikolaev VO, Gambaryan S, Engelhardt S et al (2005) Real-time monitoring of the PDE2 activity of live cells: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280(3):1716–1719. https://doi.org/10.1074/jbc.C400505200CrossRefPubMedGoogle Scholar
  137. 137.
    Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143(1):39–48. https://doi.org/10.1085/jgp.201311044CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35(2):91–100. https://doi.org/10.1016/j.tibs.2009.09.007CrossRefPubMedGoogle Scholar
  139. 139.
    Richards M, Lomas O, Jalink K et al (2016) Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 110(3):395–407. https://doi.org/10.1093/cvr/cvw080CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. https://doi.org/10.1038/srep19577CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Lohse C, Bock A, Maiellaro I et al (2017) Experimental and mathematical analysis of cAMP nanodomains. PLoS One 12(4):e0174856. https://doi.org/10.1371/journal.pone.0174856 PONE-D-16-39245CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Yang PC, Boras BW, Jeng MT et al (2016) A computational modeling and simulation approach to investigate mechanisms of subcellular cAMP compartmentation. PLoS Comput Biol 12(7):e1005005. https://doi.org/10.1371/journal.pcbi.1005005 PCOMPBIOL-D-16-00287CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Calebiro D, Maiellaro I (2014) cAMP signaling microdomains and their observation by optical methods. Front Cell Neurosci 8:350. https://doi.org/10.3389/fncel.2014.00350CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44. https://doi.org/10.1146/annurev.cellbio.19.110701.154854CrossRefPubMedGoogle Scholar
  145. 145.
    Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282(5397):2275–2279CrossRefPubMedGoogle Scholar
  146. 146.
    Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3(9):710–718. https://doi.org/10.1038/nrm911CrossRefPubMedGoogle Scholar
  147. 147.
    Schindler RF, Scotton C, Zhang J et al (2016) POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking. J Clin Invest 126(1):239–253. https://doi.org/10.1172/JCI79562CrossRefPubMedGoogle Scholar
  148. 148.
    Schindler RF, Brand T (2016) The Popeye domain containing protein family – a novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol 120(1-3):28–36. https://doi.org/10.1016/j.pbiomolbio.2016.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Taylor SS, Zhang P, Steichen JM et al (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834(7):1271–1278. https://doi.org/10.1016/j.bbapap.2013.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Langeberg LK, Scott JD (2015) Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol 16(4):232–244. https://doi.org/10.1038/nrm3966CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Jarnaess E, Ruppelt A, Stokka AJ et al (2008) Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J Biol Chem 283(48):33708–33718. https://doi.org/10.1074/jbc.M804807200CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Means CK, Lygren B, Langeberg LK et al (2011) An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc Natl Acad Sci USA 108(48):E1227–E1235. https://doi.org/10.1073/pnas.1107182108CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Bachmann VA, Mayrhofer JE, Ilouz R et al (2016) Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc Natl Acad Sci USA 113(28):7786–7791. https://doi.org/10.1073/pnas.1608061113CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Cooper DM, Crossthwaite AJ (2006) Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 27(8):426–431. https://doi.org/10.1016/j.tips.2006.06.002CrossRefPubMedGoogle Scholar
  155. 155.
    Halls ML, Cooper DM (2017) Adenylyl cyclase signalling complexes – pharmacological challenges and opportunities. Pharmacol Ther 172:171–180. https://doi.org/10.1016/j.pharmthera.2017.01.001CrossRefPubMedGoogle Scholar
  156. 156.
    Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79(12):1277–1288. https://doi.org/10.1038/ki.2011.95CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Dessauer CW (2009) Adenylyl cyclase – A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941. https://doi.org/10.1124/mol.109.059345CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Lu Y, Allen M, Halt AR et al (2007) Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP. EMBO J 26(23):4879–4890. https://doi.org/10.1038/sj.emboj.7601884CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Lu Y, Zhang M, Lim IA et al (2008) AKAP150-anchored PKA activity is important for LTD during its induction phase. J Physiol 586(17):4155–4164. https://doi.org/10.1113/jphysiol.2008.151662CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Tunquist BJ, Hoshi N, Guire ES et al (2008) Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc Natl Acad Sci USA 105(34):12557–12562. https://doi.org/10.1073/pnas.0805922105CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94. https://doi.org/10.1038/nrc2069CrossRefPubMedGoogle Scholar
  162. 162.
    Nikolaev VO, Moshkov A, Lyon AR et al (2010) b2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657. https://doi.org/10.1126/science.1185988CrossRefPubMedGoogle Scholar
  163. 163.
    Calebiro D, Nikolaev VO, Gagliani MC et al (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7(8):e1000172. https://doi.org/10.1371/journal.pbio.1000172CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538. https://doi.org/10.1038/nature12000CrossRefPubMedGoogle Scholar
  165. 165.
    Irannejad R, von Zastrow M (2014) GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 27:109–116. https://doi.org/10.1016/j.ceb.2013.10.003CrossRefPubMedGoogle Scholar
  166. 166.
    Tsvetanova NG, Trester-Zedlitz M, Newton BW et al (2017) G protein-coupled receptor endocytosis confers uniformity in responses to chemically distinct ligands. Mol Pharmacol 91(2):145–156. https://doi.org/10.1124/mol.116.106369CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10(12):1061–1065. https://doi.org/10.1038/nchembio.1665CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Kamal FA, Travers JG, Blaxall BC (2012) G protein-coupled receptor kinases in cardiovascular disease: why “where” matters. Trends Cardiovasc Med 22(8):213–219. https://doi.org/10.1016/j.tcm.2012.07.023CrossRefPubMedGoogle Scholar
  169. 169.
    Zippin JH, Chen Y, Straub SG et al (2013) CO2/HCO3(−)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288(46):33283–33291. https://doi.org/10.1074/jbc.M113.510073CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Zippin JH, Chen Y, Nahirney P et al (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84. https://doi.org/10.1096/fj.02-0598fjeCrossRefPubMedGoogle Scholar
  171. 171.
    Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100(3):309–327. https://doi.org/10.1161/01.RES.0000256354.95791.f1CrossRefPubMedGoogle Scholar
  172. 172.
    Kokkonen K, Kass DA (2017) Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu Rev Pharmacol Toxicol 57:455–479. https://doi.org/10.1146/annurev-pharmtox-010716-104756CrossRefPubMedGoogle Scholar
  173. 173.
    Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology (Bethesda) 22:320–327. https://doi.org/10.1152/physiol.00019.2007Google Scholar
  174. 174.
    Hohl CM, Li QA (1991) Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circ Res 69(5):1369–1379CrossRefPubMedGoogle Scholar
  175. 175.
    Zaccolo M, De Giorgi F, Cho CY et al (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29CrossRefPubMedGoogle Scholar
  176. 176.
    Mongillo M, McSorley T, Evellin S et al (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75. https://doi.org/10.1161/01.RES.0000134629.84732.11CrossRefPubMedGoogle Scholar
  177. 177.
    Terrin A, Di Benedetto G, Pertegato V et al (2006) PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175(3):441–451CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Acin-Perez R, Salazar E, Kamenetsky M et al (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236CrossRefPubMedGoogle Scholar
  180. 180.
    Lefkimmiatis K, Leronni D, Hofer AM (2013) The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J Cell Biol 202(3):453–462. https://doi.org/10.1083/jcb.201303159CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Chen C, Nakamura T, Koutalos Y (1999) Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys J 76(5):2861–2867. https://doi.org/10.1016/S0006-3495(99)77440-0CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Feinstein WP, Zhu B, Leavesley SJ et al (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302(6):C839–C852. https://doi.org/10.1152/ajpcell.00361.2011CrossRefPubMedGoogle Scholar
  183. 183.
    Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59(5):533–561CrossRefPubMedGoogle Scholar
  184. 184.
    Maiellaro I, Lohse MJ, Kittel RJ et al (2016) cAMP signals in drosophila motor neurons are confined to single synaptic boutons. Cell Rep 17(5):1238–1246. https://doi.org/10.1016/j.celrep.2016.09.090CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Di Benedetto G, Scalzotto E, Mongillo M et al (2013) Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab 17(6):965–975. https://doi.org/10.1016/j.cmet.2013.05.003CrossRefPubMedGoogle Scholar
  186. 186.
    Lefkimmiatis K (2014) cAMP signalling meets mitochondrial compartments. Biochem Soc Trans 42(2):265–269. https://doi.org/10.1042/BST20130281CrossRefPubMedGoogle Scholar
  187. 187.
    Acin-Perez R, Russwurm M, Gunnewig K et al (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286(35):30423–30432CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38(3):533–538CrossRefPubMedGoogle Scholar
  189. 189.
    Kakiuchi S, Yamazaki R (1970) Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3′,5′-nucleotide phosphodiesterase (3). Biochem Biophys Res Commun 41(5):1104–1110CrossRefPubMedGoogle Scholar
  190. 190.
    Mons N, Decorte L, Jaffard R et al (1998) Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci 62(17-18):1647–1652CrossRefPubMedGoogle Scholar
  191. 191.
    Willoughby D, Everett KL, Halls ML et al (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5(219):ra29. https://doi.org/10.1126/scisignal.2002299CrossRefPubMedGoogle Scholar
  192. 192.
    Martin AC, Willoughby D, Ciruela A et al (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 75(4):830–842. https://doi.org/10.1124/mol.108.051748CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Efendiev R, Dessauer CW (2011) A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology. J Cardiovasc Pharmacol 58(4):339–344. https://doi.org/10.1097/FJC.0b013e31821bc3f000005344-201110000-00002CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Lefkimmiatis K, Srikanthan M, Maiellaro I et al (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11(4):433–442. https://doi.org/10.1038/ncb1850CrossRefPubMedGoogle Scholar
  195. 195.
    Maiellaro I, Lefkimmiatis K, Moyer MP et al (2012) Termination and activation of store-operated cyclic AMP production. J Cell Mol Med 16(11):2715–2725. https://doi.org/10.1111/j.1582-4934.2012.01592.xCrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Spirli C, Locatelli L, Fiorotto R et al (2012) Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55(3):856–868. https://doi.org/10.1002/hep.24723CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Di Benedetto G, Pendin D, Greotti E et al (2014) Ca2+ and cAMP cross-talk in mitochondria. J Physiol 592(Pt 2):305–312. https://doi.org/10.1113/jphysiol.2013.259135CrossRefPubMedGoogle Scholar
  198. 198.
    Katona D, Rajki A, Di Benedetto G et al (2015) Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion. Mol Cell Endocrinol 412:196–204. https://doi.org/10.1016/j.mce.2015.05.002CrossRefPubMedGoogle Scholar
  199. 199.
    Jeon KI, Jono H, Miller CL et al (2010) Ca2+/calmodulin-stimulated PDE1 regulates the beta-catenin/TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells. FEBS J 277(24):5026–5039. https://doi.org/10.1111/j.1742-4658.2010.07908.xCrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Goraya TA, Masada N, Ciruela A et al (2004) Sustained entry of Ca2+ is required to activate Ca2+-calmodulin-dependent phosphodiesterase 1A. J Biol Chem 279(39):40494–40504. https://doi.org/10.1074/jbc.M313441200CrossRefPubMedGoogle Scholar
  201. 201.
    Wagner LE 2nd, Joseph SK, Yule DI (2008) Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 586(15):3577–3596. https://doi.org/10.1113/jphysiol.2008.152314CrossRefPubMedGoogle Scholar
  202. 202.
    Betzenhauser MJ, Fike JL, Wagner LE 2nd et al (2009) Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937. J Biol Chem 284(37):25116–25125. https://doi.org/10.1074/jbc.M109.010132CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Lanner JT, Georgiou DK, Joshi AD et al (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Marks AR (2013) Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest 123(1):46–52. https://doi.org/10.1172/JCI62834CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102CrossRefPubMedGoogle Scholar
  206. 206.
    Haase H, Karczewski P, Beckert R et al (1993) Phosphorylation of the L-type calcium channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett 335(2):217–222CrossRefPubMedGoogle Scholar
  207. 207.
    Cerra MC, Imbrogno S (2012) Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 205(1):9–25. https://doi.org/10.1111/j.1748-1716.2012.02389.xCrossRefGoogle Scholar
  208. 208.
    Wei SK, Ruknudin A, Hanlon SU et al (2003) Protein kinase A hyperphosphorylation increases basal current but decreases beta-adrenergic responsiveness of the sarcolemmal Na+-Ca2+ exchanger in failing pig myocytes. Circ Res 92(8):897–903. https://doi.org/10.1161/01.RES.0000069701.19660.1401.RES.0000069701.19660.14CrossRefPubMedGoogle Scholar
  209. 209.
    Wanichawan P, Louch WE, Hortemo KH et al (2011) Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A. Am J Physiol Cell Physiol 300(5):C989–C997. https://doi.org/10.1152/ajpcell.00196.2010CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Guerini D, Pan B, Carafoli E (2003) Expression, purification, and characterization of isoform 1 of the plasma membrane Ca2+ pump: focus on calpain sensitivity. J Biol Chem 278(40):38141–38148. https://doi.org/10.1074/jbc.M302400200CrossRefPubMedGoogle Scholar
  211. 211.
    Bruce JI, Yule DI, Shuttleworth TJ (2002) Ca2+-dependent protein kinase--a modulation of the plasma membrane Ca2+-ATPase in parotid acinar cells. J Biol Chem 277(50):48172–48181. https://doi.org/10.1074/jbc.M208393200CrossRefPubMedGoogle Scholar
  212. 212.
    Palty R, Silverman WF, Hershfinkel M et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107(1):436–441CrossRefPubMedGoogle Scholar
  213. 213.
    Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 36(7):697–705. https://doi.org/10.1002/bies.201400024CrossRefPubMedGoogle Scholar
  215. 215.
    Plattner H, Verkhratsky A (2016) Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 371(1700). https://doi.org/10.1098/rstb.2015.0419
  216. 216.
    Falzoni S, Donvito G, Di Virgilio F (2013) Detecting adenosine triphosphate in the pericellular space. Interface Focus 3(3):20120101. https://doi.org/10.1098/rsfs.2012.0101rsfs20120101CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10(4):529–564. https://doi.org/10.1007/s11302-014-9427-2CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. https://doi.org/10.1038/cddis.2009.11CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206CrossRefPubMedGoogle Scholar
  220. 220.
    Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123. https://doi.org/10.1016/j.autneu.2015.04.011CrossRefPubMedGoogle Scholar
  221. 221.
    Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. https://doi.org/10.1146/annurev.physiol.70.113006.100630CrossRefPubMedGoogle Scholar
  222. 222.
    Coade SB, Pearson JD (1989) Metabolism of adenine nucleotides in human blood. Circ Res 65(3):531–537CrossRefPubMedGoogle Scholar
  223. 223.
    Pellegatti P, Falzoni S, Pinton P et al (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16(8):3659–3665. https://doi.org/10.1091/mbc.E05-03-0222CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Corriden R, Insel PA, Junger WG (2007) A novel method using fluorescence microscopy for real-time assessment of ATP release from individual cells. Am J Physiol Cell Physiol 293(4):C1420–C1425. https://doi.org/10.1152/ajpcell.00271.2007CrossRefPubMedGoogle Scholar
  225. 225.
    Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118(3):251–266CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8-9):959–969CrossRefPubMedGoogle Scholar
  227. 227.
    Ceriani F, Pozzan T, Mammano F (2016) Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea. Proc Natl Acad Sci USA 113(46):E7194–E7201. https://doi.org/10.1073/pnas.1616061113CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Romanello M, Pani B, Bicego M et al (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289(5):1275–1281. https://doi.org/10.1006/bbrc.2001.6124S0006-291X(01)96124-8CrossRefPubMedGoogle Scholar
  229. 229.
    D’Hondt C, Ponsaerts R, De Smedt H et al (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23(2):305–316CrossRefPubMedGoogle Scholar
  230. 230.
    Adinolfi E, Callegari MG, Ferrari D et al (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272. https://doi.org/10.1091/mbc.E04-11-1025CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Sauvage V, Aubert D, Escotte-Binet S et al (2009) The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Mol Biochem Parasitol 167(2):81–94. https://doi.org/10.1016/j.molbiopara.2009.05.005CrossRefPubMedGoogle Scholar
  232. 232.
    Pankratov Y, Lalo U, Verkhratsky A et al (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129(3):257–265CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589–597. https://doi.org/10.1007/s00424-006-0061-xCrossRefPubMedGoogle Scholar
  234. 234.
    Bonora M, Patergnani S, Rimessi A et al (2012) ATP synthesis and storage. Purinergic Signal 8(3):343–357. https://doi.org/10.1007/s11302-012-9305-8CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Russo MV, McGavern DB (2015) Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 36(10):637–650. https://doi.org/10.1016/j.it.2015.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Sheng ZH (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol 27(6):403–416. https://doi.org/10.1016/j.tcb.2017.01.005CrossRefPubMedGoogle Scholar
  237. 237.
    Beraud N, Pelloux S, Usson Y et al (2009) Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 41(2):195–214. https://doi.org/10.1007/s10863-009-9214-xCrossRefPubMedGoogle Scholar
  238. 238.
    Boncompagni S, Rossi AE, Micaroni M et al (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20(3):1058–1067. https://doi.org/10.1091/mbc.E08-07-0783CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Franzini-Armstrong C (2007) ER-mitochondria communication. How privileged? Physiology (Bethesda) 22:261–268Google Scholar
  240. 240.
    Kohlhaas M, Maack C (2013) Calcium release microdomains and mitochondria. Cardiovasc Res 98(2):259–268. https://doi.org/10.1093/cvr/cvt032CrossRefPubMedGoogle Scholar
  241. 241.
    Anmann T, Varikmaa M, Timohhina N et al (2014) Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim Biophys Acta 1837(8):1350–1361. https://doi.org/10.1016/j.bbabio.2014.03.015CrossRefPubMedGoogle Scholar
  242. 242.
    Pasqualini FS, Nesmith AP, Horton RE et al (2016) Mechanotransduction and metabolism in cardiomyocyte microdomains. Biomed Res Int 2016:4081638. https://doi.org/10.1155/2016/4081638CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Wilding JR, Joubert F, de Araujo C et al (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575(Pt 1):191–200. https://doi.org/10.1113/jphysiol.2006.114116CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Ashcroft FM, Rorsman P (2013) K(ATP) channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 9(11):660–669. https://doi.org/10.1038/nrendo.2013.166CrossRefPubMedGoogle Scholar
  245. 245.
    Rorsman P, Ramracheya R, Rorsman NJ et al (2014) ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia 57(9):1749–1761. https://doi.org/10.1007/s00125-014-3279-8CrossRefPubMedGoogle Scholar
  246. 246.
    Detimary P, Gilon P, Henquin JC (1998) Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 333(Pt 2):269–274CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Rolland JF, Henquin JC, Gilon P (2002) Feedback control of the ATP-sensitive K(+) current by cytosolic Ca(2+) contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51(2):376–384CrossRefPubMedGoogle Scholar
  248. 248.
    Tanaka T, Nagashima K, Inagaki N et al (2014) Glucose-stimulated single pancreatic islets sustain increased cytosolic ATP levels during initial Ca2+ influx and subsequent Ca2+ oscillations. J Biol Chem 289(4):2205–2216. https://doi.org/10.1074/jbc.M113.499111CrossRefPubMedGoogle Scholar
  249. 249.
    Tarasov AI, Semplici F, Li D et al (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465(4):543–554. https://doi.org/10.1007/s00424-012-1177-9CrossRefPubMedGoogle Scholar
  250. 250.
    Tarasov AI, Semplici F, Ravier MA et al (2012) The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS One 7(7):e39722. https://doi.org/10.1371/journal.pone.0039722PONE-D-12-06521CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Frieden M, Arnaudeau S, Castelbou C et al (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280(52):43198–43208. https://doi.org/10.1074/jbc.M510279200CrossRefPubMedGoogle Scholar
  252. 252.
    Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263(33):17422–17428PubMedGoogle Scholar
  253. 253.
    Shinohara Y, Sagawa I, Ichihara J et al (1997) Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochim Biophys Acta 1319(2–3):319–330CrossRefPubMedGoogle Scholar
  254. 254.
    Cesar Mde C, Wilson JE (1998) Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch Biochem Biophys 350(1):109–117CrossRefPubMedGoogle Scholar
  255. 255.
    Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057CrossRefPubMedGoogle Scholar
  256. 256.
    Toyama EQ, Herzig S, Courchet J et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351(6270):275–281. https://doi.org/10.1126/science.aab4138CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Aronsen JM, Swift F, Sejersted OM (2013) Cardiac sodium transport and excitation-contraction coupling. J Mol Cell Cardiol 61:11–19. https://doi.org/10.1016/j.yjmcc.2013.06.003CrossRefPubMedGoogle Scholar
  258. 258.
    Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258(5089):1812–1815CrossRefPubMedGoogle Scholar
  259. 259.
    Suzuki KG, Fujiwara TK, Edidin M et al (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742. https://doi.org/10.1083/jcb.200609175CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Dickinson GD, Ellefsen KL, Dawson SP et al (2016) Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Sci Signal 9(453):ra108. https://doi.org/10.1126/scisignal.aag1625CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Decrock E, De Bock M, Wang N et al (2013) IP3, a small molecule with a powerful message. Biochim Biophys Acta 1833(7):1772–1786. https://doi.org/10.1016/j.bbamcr.2012.12.016CrossRefPubMedGoogle Scholar
  262. 262.
    Hernandez VH, Bortolozzi M, Pertegato V et al (2007) Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods 4(4):353–358. https://doi.org/10.1038/nmeth1031CrossRefPubMedGoogle Scholar
  263. 263.
    Sneyd J, Wilkins M, Strahonja A et al (1998) Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. Biophys Chem 72(1–2):101–109CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Riccardo Filadi
    • 1
  • Emy Basso
    • 2
  • Konstantinos Lefkimmiatis
    • 2
    • 3
  • Tullio Pozzan
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical SciencesUniversity of PadovaPadovaItaly
  2. 2.Institute of Neuroscience, Padova SectionNational Research CouncilPadovaItaly
  3. 3.Venetian Institute of Molecular MedicinePadovaItaly

Personalised recommendations