Skip to main content

The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains

  • Chapter
  • First Online:
Book cover Membrane Dynamics and Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 981))

Abstract

In this chapter the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to the structural and functional properties of PMCA, the tissue distribution of the different isoforms, including their differences during development. The importance of PMCA for regulating Ca2+ signaling in microdomains under different conditions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krebs J (1995) Calcium, biochemistry. In: Meyers RA (ed) Encyclopedia of molecular biology and molecular medicine, vol 1. VCH, Weinheim, pp 237–250

    Google Scholar 

  2. Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291:20849–20857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krebs J, Michalak M (2007) Calcium: a matter of life or death. Elsevier, Amsterdam

    Google Scholar 

  4. Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295

    Article  CAS  PubMed  Google Scholar 

  5. Kretsinger RH (1975) Hypothesis: calcium modulated proteins contain EF hands. In: Carafoli E, Clementi F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. Elsevier, Amsterdam, pp 469–478

    Google Scholar 

  6. Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    CAS  PubMed  Google Scholar 

  7. Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43

    Article  CAS  PubMed  Google Scholar 

  8. Yan Z et al (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55

    Article  CAS  PubMed  Google Scholar 

  9. Zalk R et al (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49

    Article  CAS  PubMed  Google Scholar 

  10. Baughman JM et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perocchi F et al (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caride AJ, Filoteo AG, Penniston JT, Strehler EE (2007) The plasma membrane Ca2+ pump isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation kinetics. Implications for Ca2+ signaling. J Biol Chem 282:25640–25648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brini M, Carafoli E, Cali T (2017) The plasma membrane calcium pumps: focus on the role in (neuro) pathology. Biochem Biophys Res Commun 483:1116–1124

    Article  CAS  PubMed  Google Scholar 

  15. Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strehler EE (2015) Plasma membrane calcium ATPases: from generic Ca2+ sump pumps to versatile systems for fine- tuning cellular Ca2+. Biochem Biophys Res Commun 460:26–33

    Article  CAS  PubMed  Google Scholar 

  17. Dunham ET, Glynn IM (1961) Adenosine triphosphatase activity and the active movements of alkali metal ions. J Physiol Lond 156:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schatzmann HJ (1966) ATP-dependent Ca2+ extrusion from human red cells. Experientia 22:364–368

    Article  CAS  PubMed  Google Scholar 

  19. Pederson PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance for cell function. Trends Biochem Sci 12:146–150

    Article  Google Scholar 

  20. Pederson PL, Carafoli E (1987) Ion motive ATPases. II. Energy coupling and work output. Trends Biochem Sci 12:186–189

    Article  Google Scholar 

  21. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  22. Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of the (Ca2+ + Mg2+) ATPase. Biochem Biophys Res Commun 77:1203–1209

    Article  CAS  PubMed  Google Scholar 

  23. Jarrett HW, Penniston JT (1977) Partial purification of the (Ca2+ + Mg2+) ATPase activator from human erythrocytes. Its similarity to the activator of 3′-5′ cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77:1210–1216

    Article  CAS  PubMed  Google Scholar 

  24. Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+-Mg2+)-ATPase from human erythrocytes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    CAS  PubMed  Google Scholar 

  25. Niggli V, Adunyah ES, Penniston JT, Carafoli E (1981) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256:395–401

    CAS  PubMed  Google Scholar 

  26. James P, Maeda M, Fischer R, Verma AK, Krebs J, Penniston JT, Carafoli E (1988) Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem 263:2905–2910

    CAS  PubMed  Google Scholar 

  27. Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+− and other cation transport ATPases. J Biol Chem 263:8646–8657

    CAS  PubMed  Google Scholar 

  28. Verma AK et al (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263:14152–14159

    CAS  PubMed  Google Scholar 

  29. Baekgaard L, Luoni L, De Michelis MI, Palmgren MG (2006) The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J Biol Chem 281:1058–1065

    Article  CAS  PubMed  Google Scholar 

  30. Strehler EE, Strehler-Page M-A, Vogel G, Carafoli E (1989) mRNAs for plasma membrane calcium pumpisoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc Natl Acad Sci USA 86:6908–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    Article  CAS  PubMed  Google Scholar 

  32. Krebs J (2015) The plethora of PMCA isoforms: alternative splicing and differential expression. Biochim Biophys Acta 1853:2018–2024

    Article  CAS  PubMed  Google Scholar 

  33. Tidow H, Hein KL, Baekgaard L, Palmgren MG, Nissen P (2010) Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma membrane Ca2+−ATPase ACA8. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:361–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Falchetto R, Vorherr T, Brunner J, Carafoli E (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266:2930–2936

    CAS  PubMed  Google Scholar 

  35. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dupont Y (1976) Fluorescence studies of the sarcoplasmic reticulum calcium pump. Biochem Biophys Res Commun 71:544–550

    Article  CAS  PubMed  Google Scholar 

  37. Krebs J, Vasak M, Scarpa A, Carafoli E (1987) Conformational differences between the E1 and E2 states of the calcium adenosinetriphosphatase of the erythrocyte plasma membrane as revealed by circular dichroism and fluorescence spectroscopy. Biochemistry 26:3921–3926

    Article  CAS  PubMed  Google Scholar 

  38. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  39. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  CAS  PubMed  Google Scholar 

  40. Niggli V, Sigel E, Carafoli E (1982) The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+−H+ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356

    CAS  PubMed  Google Scholar 

  41. Inesi G, Kurzmack M, Coan C, Lewis DE (1980) Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem 255:3025–3031

    CAS  PubMed  Google Scholar 

  42. Kosk-Kosicka D, Bzdega T (1988) Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J Biol Chem 263:18184–18189

    CAS  PubMed  Google Scholar 

  43. Krebs J, Helms V, Griesinger C, Carafoli E (2003) The regulation of the calcium signal by membrane pumps. Helv Chim Acta 86:3875–3888

    Article  CAS  Google Scholar 

  44. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS_MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kataoka M, Head JF, Vorherr T, Krebs J, Carafoli E (1991) Small-angle X-ray scattering study of calmodulin bound to two peptides corresponding to parts of the calmodulin-binding domain of the plasma membrane Ca2+ pump. Biochemistry 30:6247–6251

    Article  CAS  PubMed  Google Scholar 

  46. Elshorst B et al (1999) NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38:12320–12332

    Article  CAS  PubMed  Google Scholar 

  47. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742

    Article  CAS  PubMed  Google Scholar 

  48. Guerini D, Krebs J, Carafoli E (1984) Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem 259:15172–15177

    CAS  PubMed  Google Scholar 

  49. Gao ZH, Krebs J, VanBerkum MF, Tang WJ, Maune JF, Means AR, Stull JT, Beckingham K (1993) Activation of four enzymes by two series of calmodulin mutants with point mutations in individual Ca2+ binding sites. J Biol Chem 268:20096–20104

    CAS  PubMed  Google Scholar 

  50. Ikura M, Spera S, Barbato G, Kay LE, Krinks M, Bax A (1991) Secundary structure and side-chain1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry 30:9216–9228

    Article  CAS  PubMed  Google Scholar 

  51. Ikura M, Barbato G, Klee CB, Bax a (1992) Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Cell Calcium 13:391–400

    Article  CAS  PubMed  Google Scholar 

  52. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256:632–638

    Article  CAS  PubMed  Google Scholar 

  53. Juranic N et al (2010) Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J Biol Chem 285:4015–4024

    Article  CAS  PubMed  Google Scholar 

  54. Carafoli E, Krebs J (2016) Calcium and calmodulin signaling. In: Bradshaw RA, Stahl PD (eds) Encyclopedia of cell biology, vol 3. Elsevier, Waltham, MA, pp 161–169

    Chapter  Google Scholar 

  55. Enyedi A et al (1994) The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem 269:41–43

    CAS  PubMed  Google Scholar 

  56. Silverstein RS, Tempel BL (2006) Atp2b2 encoding plasma membrane Ca2+-ATPase type 2, (PMCA2) exhibits tissue specific first exon usage in hair cells, neurons and mammary glands of mice. Neuroscience 141:245–257

    Article  CAS  PubMed  Google Scholar 

  57. Brini M, Cali T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J 280:5385–5397

    Article  CAS  PubMed  Google Scholar 

  58. Prasad V, Okunade GW, Miller ML, Shull GE (2004) Phenotypes of SERCA and PMCA knock out mice. Biochem Biophys Res Commun 322:1192–1203

    Article  CAS  PubMed  Google Scholar 

  59. Hilfiker H, Guerini D, Carafoli E (1994) Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. J Biol Chem 269:26178–26183

    CAS  PubMed  Google Scholar 

  60. Furuta H, Luo L, Hepler K, Ryan AF (1998) Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 123:10–26

    Article  CAS  PubMed  Google Scholar 

  61. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078

    CAS  PubMed  Google Scholar 

  62. Eakin TJ, Antonelli MC, Malchiodi EL, Baskin DG, Stahl WL (1995) Localization of the plasma membrane Ca2+-ATPase isoform PMCA3 in rat cerebellum, choroid plexus and hippocampus. Mol Brain Res 29:71–80

    Article  CAS  PubMed  Google Scholar 

  63. Stauffer TP, Guerini D, Carafoli E (1995) Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem 270:12184–12190

    Article  CAS  PubMed  Google Scholar 

  64. Greeb J, Shull GE (1989) Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+- transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem 264:18569–18576

    CAS  PubMed  Google Scholar 

  65. Goellner GM, DeMarco SJ, Strehler EE (2003) Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants. Ann NY Acad Sci 986:461–471

    Article  CAS  PubMed  Google Scholar 

  66. Kim E, DeMarco SJ, Marfatia SM, Chisti AH, Sheng M, Strehler EE (1998) Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD95/Dlg/ZO-1) domains. J Biol Chem 273:1591–1595

    Article  CAS  PubMed  Google Scholar 

  67. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  CAS  PubMed  Google Scholar 

  68. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okunade GW et al (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    Article  CAS  PubMed  Google Scholar 

  70. Brandt P, Neve RL (1992) Expression of plasma membrane calcium-pumping ATPase mRNAs in developing rat brain and adult brain subregions: evidence for stage-specific expression. J Neurochem 59:1566–1569

    Article  CAS  PubMed  Google Scholar 

  71. Kip SN, Gray NW, Burette A, Canbay A, Weinberg RJ, Strehler EE (2006) Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus 16:20–34

    Article  CAS  PubMed  Google Scholar 

  72. Kenyon KA, Bushong EA, Mauer AS, Strehler EE, Weinberg RJ, Burette AC (2010) Cellular and subcellular localization of the neuron-specific plasma membrane calcium ATPase PMCA1a in the rat brain. J Comp Neurol 518:3169–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann NY Acad Sci 1099:226–236

    Article  CAS  PubMed  Google Scholar 

  74. Krebs J (1998) Calmodulin-dependent protein kinase IV: regulation of function and expression. Biochim Biophys Acta 1448:183–189

    Article  CAS  PubMed  Google Scholar 

  75. Xie J, Black DL (2001) A CaMKIV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410:936–939

    Article  CAS  PubMed  Google Scholar 

  76. Liu G et al (2012) A conserved serine of heterogeneous nuclear ribonucleoprotein L (hnRNP L) mediates depolarization-regulated alternative splicing of potassium channels. J Biol Chem 287:22709–22716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xie J, Calvin J, Stoilov P, Park J, Black DL (2005) A consensus CaMKIV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11:1825–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krebs J, Means RL, Honegger P (1996) Induction of calmodulin kinase IV by the thyroid hormoneduring the development of rat brain. J Biol Chem 271:11055–11058

    Article  CAS  PubMed  Google Scholar 

  79. Krebs J (2017) Implications of the thyroid hormone on neuronal development with special emphasis on the calmodulin-kinase IV pathway. Biochim Biophys Acta 1864:877–882

    Article  CAS  PubMed  Google Scholar 

  80. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    Article  CAS  PubMed  Google Scholar 

  81. Kozel PJ et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696

    Article  CAS  PubMed  Google Scholar 

  82. Ficarella R et al (2007) A functional study of plasma membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci USA 104:1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reinhardt TA, Horst RL (1999) Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. Am J Phys 276:C796–C802

    Article  CAS  Google Scholar 

  84. Jeong J et al (2016) PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci USA 113:E282–E290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beuschlein F et al (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45:440–445

    Article  CAS  PubMed  Google Scholar 

  86. Williams TA et al (2014) Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63:188–195

    Article  CAS  PubMed  Google Scholar 

  87. Zanni G et al (2012) Mutation of plasma membrane Ca2+ ATPase isoform3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci USA 109:14514–14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE, McBride OW (1994) Localization of two genes encoding plasma membrane Ca2+-ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26-25 and Xq28, respectively. Cytogenet Cell Genet 67:41–45

    Article  CAS  PubMed  Google Scholar 

  89. Feyma T et al (2016) Dystonia in ATP2B3-associated X-linked spinocerebellar ataxia. Mov Disord 31:1752–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tatsuki F et al (2016) Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron 90:70–85

    Article  CAS  PubMed  Google Scholar 

  91. Wennemuth G, Babcock DF, Hille B (2003) Calcium clearance mechanisms of mouse sperm. J Cell Biol 122:115–128

    CAS  Google Scholar 

  92. Schuh K et al (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  93. Brandenburger T et al (2011) Switch of PMCA4 splice variants in bovine epididymis results in altered isoform expression during functional sperm maturation. J Biol Chem 286:7938–7946

    Article  CAS  PubMed  Google Scholar 

  94. Prasad V et al (2014) Ablation of plasma membrane Ca2+-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophyc cardiomyopathy. J Mol Cell Cardiol 77:53–63

    Article  CAS  PubMed  Google Scholar 

  95. Wu X et al (2009) Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest 119:976–985

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ho PW, Pang SY, Li M, Tse ZH, Kung MH, Sham PC, Ho SL (2015) PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion. Brain Behav 5:e00321

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li M, Ho PW, Pang SY, Tse ZH, Kung MH, Sham PC, Ho SL (2014) PMCA4 (ATP2B4) mutation in familial spastic paraplegia. PLoS One 9:e104790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marques-da-Silva D, Gutierrez-Merino C (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 56:108–123

    Article  CAS  PubMed  Google Scholar 

  99. Schuh K, Uldrijan S, Telkamp M, Röthlein N, Neyses L (2001) The plasma membrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oceandy D et al (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–492

    Article  CAS  PubMed  Google Scholar 

  101. Mohamed TM et al (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286:41520–41529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bozulik LD, Malik MT, Powell DW, Nanez A, Link AJ, Ramos KS, Dean WL (2007) Plasma membrane Ca(2+)-ATPase associates with CLP36, alpha-actinin, and actin in human platelets. Thromb Haemost 97:587–597

    Article  CAS  Google Scholar 

  103. Kruger WA, Yun CC, Monteith GR, Poronnik P (2009) Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 284:1820–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gomez-Varela D, Schmidt M, Schoellermann J, Peters EC, Berg DK (2012) PMCA2 via PSD-95 controls calcium signaling by α7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci 32:6894–6905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carafoli E, Zurini M (1982) The Ca2+-pumping ATPase of plasma membranes: purification, reconstitution and properties. Biochim Biophys Acta 683:279–301

    Article  CAS  PubMed  Google Scholar 

  106. Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT (1984) Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125:908–915

    Article  CAS  PubMed  Google Scholar 

  107. Ambudkar IS, de Souza LB, Ong HL (2017) TRPC1, Orai 1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 63:33–39

    Article  CAS  PubMed  Google Scholar 

  108. Hogan PG, Rao A (2015) Store-operated calcium entry: mechanisms and modulation. Biochem Biophys Res Commun 460:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maleth J, Choi S, Muallem S, Ahuja M (2015) Translocation of PI(4,5) P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 5:5843

    Article  Google Scholar 

  110. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels 5:424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Thanks are due to Marek Michalak for critically reading the manuscript.

Conflict of Interest

The author declares no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Krebs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krebs, J. (2017). The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains. In: Krebs, J. (eds) Membrane Dynamics and Calcium Signaling. Advances in Experimental Medicine and Biology, vol 981. Springer, Cham. https://doi.org/10.1007/978-3-319-55858-5_1

Download citation

Publish with us

Policies and ethics