Skip to main content

A Review of Crack Propagation Modeling Using Peridynamics

  • Chapter
  • First Online:
Probabilistic Prognostics and Health Management of Energy Systems

Abstract

Improvements on prognostics and health management (PHM) techniques are extremely important in order to prevent system failure and reduce costs with maintenance and machine downtime. In the particular case of system components subjected to fracture failure, such improvements are closely related to the effect of crack propagation mechanisms on the quantification of the system remaining useful life (RUL). This chapter presents a review of the state-of-the-art of crack propagation modeling techniques and discusses the current limitations of finite elements methods (FEM) to model structures with cracks. The chapter also gives special attention to peridynamics (PD), a continuum non-local approach that has been considered to be a promising method to model structures with crack discontinuities. Therefore, the purpose of this chapter is to answer the following research question: “Can PD be a potential alternative to FEM on modeling of crack propagation problems in predicting RUL?” In order to answer this question, a literature review of the most relevant works on crack modeling field is presented and discussed. An application that involves a classical 2D crack propagation problem in a pre-notched glass plate is also included, in which comparisons between numerical predictions and experimental observations were performed. It was shown that PD produces more accurate predictions than FEM based-methods from both qualitative and quantitative perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bartram, S. Mahadevan, Probabilistic prognosis with dynamic bayesian networks. Int. J. Progn. Health Manage. 2, 2153–2648 (2015)

    Google Scholar 

  2. A.K. Garga, K.T. McClintic, R.L. Campbell, C.-C. Yang, M.S. Lebold, T.A. Hay, C.S. Byington, Hybrid reasoning for prognostic learning in CBM systems, in 2001 IEEE Aerospace Conference Proceedings, vol. 6 (2001), pp. 2957–2969

    Google Scholar 

  3. B. Saha, K. Goebel, S. Poll, J. Christophersen, Prognostics methods for battery health monitoring using a bayesian framework. IEEE Trans. Instrum. Meas. 58(2), 291–296 (2009)

    Article  Google Scholar 

  4. D. An, N.H. Kim, J.H. Choi, Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab. Eng. Syst. Saf. 133, 223–236 (2015)

    Article  Google Scholar 

  5. X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  MathSciNet  Google Scholar 

  6. S. Sankararaman, K. Goebel, Why is the remaining useful life prediction uncertain?, in Annual Conference of the Prognostics and Health Management Society (2013), pp. 1–13

    Google Scholar 

  7. S. Sankararaman, M.J. Daigle, K. Goebel, Uncertainty quantification in remaining useful life prediction using first-order reliability methods. IEEE Trans. Reliab. 63(2), 1–17 (2014)

    Article  Google Scholar 

  8. D. An, J.-H. Choi, N.H. Kim, Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng. Syst. Saf. 115, 161–169 (2013)

    Article  Google Scholar 

  9. H. Xiaoping, T. Moan, C. Weicheng, An engineering model of fatigue crack growth under variable amplitude loading. Int. J. Fatigue 30(1), 2–10 (2008)

    Article  Google Scholar 

  10. Z. Chen, Y. Shao, Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng. Fail. Anal. 18(8), 2149–2164 (2011)

    Article  Google Scholar 

  11. F. Chaari, T. Fakhfakh, M. Haddar, Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur. J. Mech.-A/Solids 28(3), 461–468 (2009)

    Article  MATH  Google Scholar 

  12. Y. Pandya, A. Parey, Simulation of crack propagation in spur gear tooth for different gear parameter and its influence on mesh stiffness. Eng. Fail. Anal. 30, 124–137 (2013)

    Article  Google Scholar 

  13. I.V. Singh, B.K. Mishra, S. Bhattacharya, R.U. Patil, The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 36(1), 109–119 (2012)

    Article  Google Scholar 

  14. X.F. Hu, W.A. Yao, A new enriched finite element for fatigue crack growth. Int. J. Fatigue 48, 247–256 (2013)

    Article  Google Scholar 

  15. F.M. Alemayehu, S. Ekwaro-Osire, Probabilistic Model-Based Prognostics using Meshfree Modeling, in Probabilistic Prognostics and Health Management of Energy Systems, ed. By S. Ekwaro-Osire, A.C. Gonçalves, F.M. Alemayehu (Springer, New York, Chapter 1, 2017). ISBN: 978-3-319-55851-6

    Google Scholar 

  16. S. Ekwaro-Osire, H. B. Endeshaw, F.M. Alemayehu, O. Geçgel, Probabilistic Model-Based Prognostics using Meshfree Modeling, in Probabilistic Prognostics and Health Management of Energy Systems, ed. By S. Ekwaro-Osire, A.C. Gonçalves, F.M. Alemayehu (Springer, New York, Chapter 5, 2017). ISBN: 978-3-319-55851-6

    Google Scholar 

  17. N. Sukumar, D.L. Chopp, E. Béchet, N. Moes, Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int. J. Numer. Meth. Eng. 76(5), 727–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Chen, T. Rabczuk, S.P.A. Bordas, G.R. Liu, K.Y. Zeng, P. Kerfriden, Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209, 250–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.-H. Gozin, M. Aghaie-Khafri, Quarter elliptical crack growth using three dimensional finite element method and crack closure technique. J. Mech. Sci. Technol. 28(6), 2141–2151 (2014)

    Article  Google Scholar 

  20. Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1-2), 229–244 (2010)

    Article  MATH  Google Scholar 

  21. Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)

    Article  Google Scholar 

  22. A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)

    Article  MATH  Google Scholar 

  23. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Beckmann, R. Mella, M.R. Wenman, Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus. Comput. Methods Appl. Mech. Eng. 263, 71–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. He, J. Liu, D. Xie, Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis. Eng. Fract. Mech. 139, 56–77 (2015)

    Article  Google Scholar 

  26. J. Fish and T. Belytschko, A First Course in Finite Elements, Wiley, 2007

    Google Scholar 

  27. M. Taylor, D.J. Steigmann, A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20(8), 998–1010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  29. R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    Article  MathSciNet  Google Scholar 

  30. Q. Meng, Z. Wang, Extended finite element method for power-law creep crack growth. Eng. Fract. Mech. 127, 148–160 (2014)

    Article  Google Scholar 

  31. W. Liu, J.W. Hong, A coupling approach of discretized peridynamics with finite element method. Comput. Methods Appl. Mech. Eng. 245, 163–175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Meth. Eng. 61, 2316–2343 (2004)

    Article  MATH  Google Scholar 

  33. D. Dipasquale, M. Zaccariotto, U. Galvanetto, Crack propagation with adaptive grid refinement in 2D peridynamics. Int. J. Fract. 190(1-2), 1–22 (2014)

    Article  Google Scholar 

  34. W. Hu, Y.D. Ha, F. Bobaru, S.A. Silling, The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176(2), 195–206 (2012)

    Article  Google Scholar 

  35. X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9), 1237-1250 (2011)

    Google Scholar 

  36. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17), 1526–1535 (2005)

    Article  Google Scholar 

  37. M. Ramulu, A.S. Kobayashi, Mechanics of crack curving and branching—a dynamic fracture analysis. Int. J. Fract. 273(4), 187–200 (1985)

    Google Scholar 

  38. J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42(2), 239–250 (2008)

    Article  MATH  Google Scholar 

  39. J.-H. Song, T. Belytschko, Cracking node method for dynamic fracture with finite elements. Int. J. Numer. Meth. Eng. 77(3), 360–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. F.P. Bowden, J.H. Brunton, J.E. Field, A.D. Heyes, Controlled fracture of brittle solids and interruption of electrical current. Nature 216, 38–42 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. João Paulo Dias (corresponding author) would like to thank Professor Stephen Ekwaro-Osire (corresponding editor of this book) for the fruitful discussions during the writing process of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dias, J.P., Bazani, M.A., Paschoalini, A.T., Barbanti, L. (2017). A Review of Crack Propagation Modeling Using Peridynamics. In: Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F. (eds) Probabilistic Prognostics and Health Management of Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-55852-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55852-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55851-6

  • Online ISBN: 978-3-319-55852-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics