A Review of Crack Propagation Modeling Using Peridynamics

  • João Paulo Dias
  • Márcio Antonio Bazani
  • Amarildo Tabone Paschoalini
  • Luciano Barbanti


Improvements on prognostics and health management (PHM) techniques are extremely important in order to prevent system failure and reduce costs with maintenance and machine downtime. In the particular case of system components subjected to fracture failure, such improvements are closely related to the effect of crack propagation mechanisms on the quantification of the system remaining useful life (RUL). This chapter presents a review of the state-of-the-art of crack propagation modeling techniques and discusses the current limitations of finite elements methods (FEM) to model structures with cracks. The chapter also gives special attention to peridynamics (PD), a continuum non-local approach that has been considered to be a promising method to model structures with crack discontinuities. Therefore, the purpose of this chapter is to answer the following research question: “Can PD be a potential alternative to FEM on modeling of crack propagation problems in predicting RUL?” In order to answer this question, a literature review of the most relevant works on crack modeling field is presented and discussed. An application that involves a classical 2D crack propagation problem in a pre-notched glass plate is also included, in which comparisons between numerical predictions and experimental observations were performed. It was shown that PD produces more accurate predictions than FEM based-methods from both qualitative and quantitative perspectives.


Prognostics and health management Crack propagation modeling Peridynamics 



Dr. João Paulo Dias (corresponding author) would like to thank Professor Stephen Ekwaro-Osire (corresponding editor of this book) for the fruitful discussions during the writing process of this chapter.


  1. 1.
    G. Bartram, S. Mahadevan, Probabilistic prognosis with dynamic bayesian networks. Int. J. Progn. Health Manage. 2, 2153–2648 (2015)Google Scholar
  2. 2.
    A.K. Garga, K.T. McClintic, R.L. Campbell, C.-C. Yang, M.S. Lebold, T.A. Hay, C.S. Byington, Hybrid reasoning for prognostic learning in CBM systems, in 2001 IEEE Aerospace Conference Proceedings, vol. 6 (2001), pp. 2957–2969Google Scholar
  3. 3.
    B. Saha, K. Goebel, S. Poll, J. Christophersen, Prognostics methods for battery health monitoring using a bayesian framework. IEEE Trans. Instrum. Meas. 58(2), 291–296 (2009)CrossRefGoogle Scholar
  4. 4.
    D. An, N.H. Kim, J.H. Choi, Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab. Eng. Syst. Saf. 133, 223–236 (2015)CrossRefGoogle Scholar
  5. 5.
    X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Sankararaman, K. Goebel, Why is the remaining useful life prediction uncertain?, in Annual Conference of the Prognostics and Health Management Society (2013), pp. 1–13Google Scholar
  7. 7.
    S. Sankararaman, M.J. Daigle, K. Goebel, Uncertainty quantification in remaining useful life prediction using first-order reliability methods. IEEE Trans. Reliab. 63(2), 1–17 (2014)CrossRefGoogle Scholar
  8. 8.
    D. An, J.-H. Choi, N.H. Kim, Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng. Syst. Saf. 115, 161–169 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Xiaoping, T. Moan, C. Weicheng, An engineering model of fatigue crack growth under variable amplitude loading. Int. J. Fatigue 30(1), 2–10 (2008)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, Y. Shao, Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng. Fail. Anal. 18(8), 2149–2164 (2011)CrossRefGoogle Scholar
  11. 11.
    F. Chaari, T. Fakhfakh, M. Haddar, Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur. J. Mech.-A/Solids 28(3), 461–468 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Y. Pandya, A. Parey, Simulation of crack propagation in spur gear tooth for different gear parameter and its influence on mesh stiffness. Eng. Fail. Anal. 30, 124–137 (2013)CrossRefGoogle Scholar
  13. 13.
    I.V. Singh, B.K. Mishra, S. Bhattacharya, R.U. Patil, The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 36(1), 109–119 (2012)CrossRefGoogle Scholar
  14. 14.
    X.F. Hu, W.A. Yao, A new enriched finite element for fatigue crack growth. Int. J. Fatigue 48, 247–256 (2013)CrossRefGoogle Scholar
  15. 15.
    F.M. Alemayehu, S. Ekwaro-Osire, Probabilistic Model-Based Prognostics using Meshfree Modeling, in Probabilistic Prognostics and Health Management of Energy Systems, ed. By S. Ekwaro-Osire, A.C. Gonçalves, F.M. Alemayehu (Springer, New York, Chapter 1, 2017). ISBN: 978-3-319-55851-6Google Scholar
  16. 16.
    S. Ekwaro-Osire, H. B. Endeshaw, F.M. Alemayehu, O. Geçgel, Probabilistic Model-Based Prognostics using Meshfree Modeling, in Probabilistic Prognostics and Health Management of Energy Systems, ed. By S. Ekwaro-Osire, A.C. Gonçalves, F.M. Alemayehu (Springer, New York, Chapter 5, 2017). ISBN: 978-3-319-55851-6Google Scholar
  17. 17.
    N. Sukumar, D.L. Chopp, E. Béchet, N. Moes, Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int. J. Numer. Meth. Eng. 76(5), 727–748 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    L. Chen, T. Rabczuk, S.P.A. Bordas, G.R. Liu, K.Y. Zeng, P. Kerfriden, Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209, 250–265 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M.-H. Gozin, M. Aghaie-Khafri, Quarter elliptical crack growth using three dimensional finite element method and crack closure technique. J. Mech. Sci. Technol. 28(6), 2141–2151 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1-2), 229–244 (2010)CrossRefMATHGoogle Scholar
  21. 21.
    Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)CrossRefMATHGoogle Scholar
  23. 23.
    S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    R. Beckmann, R. Mella, M.R. Wenman, Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus. Comput. Methods Appl. Mech. Eng. 263, 71–80 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    W. He, J. Liu, D. Xie, Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis. Eng. Fract. Mech. 139, 56–77 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Fish and T. Belytschko, A First Course in Finite Elements, Wiley, 2007Google Scholar
  27. 27.
    M. Taylor, D.J. Steigmann, A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20(8), 998–1010 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications (Springer, New York, 2014)CrossRefMATHGoogle Scholar
  29. 29.
    R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Q. Meng, Z. Wang, Extended finite element method for power-law creep crack growth. Eng. Fract. Mech. 127, 148–160 (2014)CrossRefGoogle Scholar
  31. 31.
    W. Liu, J.W. Hong, A coupling approach of discretized peridynamics with finite element method. Comput. Methods Appl. Mech. Eng. 245, 163–175 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Meth. Eng. 61, 2316–2343 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    D. Dipasquale, M. Zaccariotto, U. Galvanetto, Crack propagation with adaptive grid refinement in 2D peridynamics. Int. J. Fract. 190(1-2), 1–22 (2014)CrossRefGoogle Scholar
  34. 34.
    W. Hu, Y.D. Ha, F. Bobaru, S.A. Silling, The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176(2), 195–206 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9), 1237-1250 (2011)Google Scholar
  36. 36.
    S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17), 1526–1535 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Ramulu, A.S. Kobayashi, Mechanics of crack curving and branching—a dynamic fracture analysis. Int. J. Fract. 273(4), 187–200 (1985)Google Scholar
  38. 38.
    J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42(2), 239–250 (2008)CrossRefMATHGoogle Scholar
  39. 39.
    J.-H. Song, T. Belytschko, Cracking node method for dynamic fracture with finite elements. Int. J. Numer. Meth. Eng. 77(3), 360–385 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    F.P. Bowden, J.H. Brunton, J.E. Field, A.D. Heyes, Controlled fracture of brittle solids and interruption of electrical current. Nature 216, 38–42 (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • João Paulo Dias
    • 1
  • Márcio Antonio Bazani
    • 2
  • Amarildo Tabone Paschoalini
    • 2
  • Luciano Barbanti
    • 3
  1. 1.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Department of Mechanical EngineeringSão Paulo State University (UNESP)Ilha SolteiraBrazil
  3. 3.Department of MathematicsSão Paulo State University (UNESP)Ilha SolteiraBrazil

Personalised recommendations