Advertisement

Overview on Gear Health Prognostics

  • Fuqiong Zhao
  • Zhigang Tian
  • Yong Zeng
Chapter

Abstract

This chapter is dedicated to an overview of prognostics methods for gear health management. By noticing that most prognostic methods are application dependent and new methods keep emerging, this study is necessary for providing the latest status of prognostics capability specific to gears. The reviewed frameworks and/or methods are grouped into data-driven, physics-based and integrated ones. Their respective merits and drawbacks are outlined. The opportunities and challenges are also discussed for future research.

Keywords

Gears Prognostics Condition monitoring Failure mode Remaining useful life prediction Vibration analysis 

References

  1. 1.
    G. Vachtsevanos, F.L. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems (Wiley, 2006)Google Scholar
  2. 2.
    P.D. McFadden, Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration. J. Vib. Acoust. Stress Reliab. Des. 108, 165–170 (1986)CrossRefGoogle Scholar
  3. 3.
    W.J. Wang, P.D. McFadden, Decomposition of gear motion signals and its application to gearbox diagnostics. J. Vib. Acoust. 117, 363–369 (1995)CrossRefGoogle Scholar
  4. 4.
    D. Brie, M. Tomczak, H. Oehlmann, A. Richard, Gear crack detection by adaptive amplitude and phase demodulation. Mech. Syst. Signal Process. 11, 149–167 (1997)CrossRefGoogle Scholar
  5. 5.
    P. Vecer, M. Kreidl, R. Smid, Condition indicators for gearbox condition monitoring systems. Acta Polytechnica 45, 35–43 (2005)Google Scholar
  6. 6.
    A.K. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Heng, S. Zhang, A. Tan, J. Mathew, Review—rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23, 724–739 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Liao, F. Kottig, Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 63, 191–207 (2014)CrossRefGoogle Scholar
  9. 9.
    J.W. Hines, A. Usynin, Current computational trends in equipment prognostics. Int. J. Comput. Intell. Syst. 1, 94–102 (2008)CrossRefGoogle Scholar
  10. 10.
    K.L. Tsui, N. Chen, Q. Zhou, Y. Hai, W. Wang, Prognostics and health management: a review on data driven approaches. Math. Probl. Eng. 2015, Article ID 793161, 17 pp. (2015)Google Scholar
  11. 11.
    E. Zio, Prognostics and health management of industrial equipment, in Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, ed. by S. Kadry (IGI Global, 2012), pp. 333–356Google Scholar
  12. 12.
    X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213, 1–14 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modeling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25, 1803–1836 (2011)CrossRefGoogle Scholar
  14. 14.
    A.K.S. Jardine, A.H.C. Tsang, Maintenance, Replacement, and Reliability: Theory and Applications (CRC Press, 2005)Google Scholar
  15. 15.
    W. Weibull, A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademiens, Handlingar 151 (1939)Google Scholar
  16. 16.
    G. Lundberg, A. Palmgren, Dynamic capacity of rolling bearing. Ingeniors Vetenskaps Akademiens, Handlingar 196 (1947)Google Scholar
  17. 17.
    J.J. Coy, D.P. Townsend, E.V. Zaretsky, Dynamic capacity and surface fatigue life for spur and helical gears. J. Lubr. Technol. 267–274 (1976)Google Scholar
  18. 18.
    P.C. Paris, F. Erdogen, A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963)CrossRefGoogle Scholar
  19. 19.
    H. Liebowitz, E.T. Moyer, Finite element methods in fracture mechanics. Comput. Struct. 31, 1–9 (1989)CrossRefGoogle Scholar
  20. 20.
    R.D. Henshell, K.G. Shaw, Crack tip finite elements are unnecessary. Int. J. Numer. Meth. Eng. 9, 495–507 (1975)CrossRefMATHGoogle Scholar
  21. 21.
    R.S. Barsoum, On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Numer. Meth. Eng. 10, 25–37 (1976)CrossRefMATHGoogle Scholar
  22. 22.
    L.B. Sills, D. Sherman, On quarter-point three-dimensional finite elements in linear elastic fracture mechanics. Int. J. Fract. 41, 177–196 (1989)CrossRefGoogle Scholar
  23. 23.
    J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)CrossRefGoogle Scholar
  24. 24.
    B. Abersek, J. Flasker, Numerical methods for evaluation of service life gear. Int. J. Numer. Meth. Eng. 38, 2531–2545 (1995)CrossRefMATHGoogle Scholar
  25. 25.
    S. Pehan, T.K. Hellen, J. Flasker, Applying numerical methods for determining the service life of gears. Fatigue Fract. Eng. Mater. Struct. 18, 971–979 (1995)CrossRefGoogle Scholar
  26. 26.
    L.E. Spievak, P.A. Wawrzynek, A.R. Ingraffea, D.G. Lewicki, Simulating fatigue crack growth in spiral bevel gears. Eng. Fract. Mech. 68, 53–76 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Glodez, M. Sraml, J. Kramberger, A computational model for determination of service life of gears. Int. J. Fatigue 24, 1013–1020 (2002)CrossRefMATHGoogle Scholar
  28. 28.
    J.E. Collipriest, An experimentalist’s view of the surface flaw problem, in The Surface Crack: Physics Problems Compute Solutions, ASME (1972), pp. 43–61Google Scholar
  29. 29.
    K. Inoue, M. Kato, N. Takatsu, Fracture mechanics based evaluation of strength of carburized gear teeth, in Proceedings of the JSME International Conference on Motion and Power Transmissions (1991), pp. 801–806Google Scholar
  30. 30.
    M. Guagliano, L. Vergani, Effect of crack closure on gear crack propagation. Int. J. Fatigue 23, 65–73 (2001)CrossRefGoogle Scholar
  31. 31.
    E. Wheeler, Spectrum loading and crack growth. J. Basic Eng. Trans. ASME 94, 181–186 (1972)CrossRefGoogle Scholar
  32. 32.
    S. Pehan, T.K. Hellen, J. Flakder, S. Glodez, Numerical methods for determining stress intensity factors vs crack depth in gear tooth roots. Int. J. Fatigue 19, 677–685 (1997)CrossRefGoogle Scholar
  33. 33.
    D.G. Lewicki, R. Ballarini, Gear crack propagation investigations. Tribotest J. 5, 157–172 (1998)CrossRefGoogle Scholar
  34. 34.
    D.G. Lewicki, R. Ballarini, Rim thickness effects on gear crack propagation life. Int. J. Fract. 87, 59–86 (1997)CrossRefGoogle Scholar
  35. 35.
    D.G. Lewicki, R.F. Handschuh, L.E. Spievak, P.A. Wawrzynek, A.R. Ingraffea, Consideration of moving tooth load in gear crack propagation predictions. Trans. ASME 123, 118–124 (2001)CrossRefGoogle Scholar
  36. 36.
    C. Li, H. Lee, Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech. Syst. Signal Process. 19, 836–846 (2005)CrossRefGoogle Scholar
  37. 37.
    S. Choi, C.J. Li, Practical gear crack prognosis via gear condition index fusion, gear dynamic simulator, and fast crack growth model. J. Syst. Control Eng. 221, 465–473 (2007)Google Scholar
  38. 38.
    C.J. Li, H. Lee, S.H. Choi, Estimating size of gear tooth root crack using embedded modeling. Mech. Syst. Signal Process. 16, 841–852 (2002)CrossRefGoogle Scholar
  39. 39.
    S. Choi, C.J. Li, Estimation of gear tooth transverse crack size from vibration by fusing selected gear condition indices. Meas. Sci. Technol. 17, 2395–2400 (2006)CrossRefGoogle Scholar
  40. 40.
    J.F. Archard, Contact and rubbing of flat surface. J. Appl. Phys. 24, 981–988 (1953)CrossRefGoogle Scholar
  41. 41.
    T.F.J. Quinn, Review of oxidation wear, Parts I and II. Tribol. Int. 16, Part I 257–305 and Part II 305–315 (1983)Google Scholar
  42. 42.
    S. Wu, H.S. Cheng, A sliding wear model for partial-EHL contacts. ASME J. Tribol. 113, 134–141 (1991)CrossRefGoogle Scholar
  43. 43.
    S. Wu, H.S. Cheng, Sliding wear calculation in spur gears. J. Tribol. 115, 493–500 (1993)CrossRefGoogle Scholar
  44. 44.
    A. Flodin, S. Andersson, Simulation of mild wear in spur gears. Wear 207, 16–23 (1997)CrossRefGoogle Scholar
  45. 45.
    A. Flodin, S. Andersson, Simulation of wild wear in helical gears. Wear 241, 123–128 (2000)CrossRefGoogle Scholar
  46. 46.
    P. Bajpai, A. Kahraman, N.E. Anderson, A surface wear prediction methodology for parallel-axis gear pairs. J. Tribol. 126, 597–605 (2004)CrossRefGoogle Scholar
  47. 47.
    F. Zhao, Z. Tian, Y. Zeng, Integrated prognostics method for gear wear prediction. FinishedGoogle Scholar
  48. 48.
    P. Tse, D. Atherton, Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. J. Vib. Acoust. 121, 355–362 (1999)CrossRefGoogle Scholar
  49. 49.
    W.Q. Wang, M.F. Golnaraghi, F. Ismail, Prognosis of machine health condition using neuro-fuzzy systems. Mech. Syst. Signal Process. 18, 813–831 (2004)CrossRefGoogle Scholar
  50. 50.
    W. Wang, F. Ismail, F. Golnaraghi, Assessment of gear damage monitoring techniques using vibration measurements. Mech. Syst. Signal Process. 15, 905–922 (2001)CrossRefGoogle Scholar
  51. 51.
    W. Wang, An intelligent system for machinery condition monitoring. IEEE Trans. Fuzzy Syst. 16, 110–122 (2008)CrossRefGoogle Scholar
  52. 52.
    B. Samanta, C. Nataraj, Prognostics of machine condition using soft computing. Robot. Comput.-Integr. Manuf. 24, 816–823 (2008)CrossRefGoogle Scholar
  53. 53.
    Z. Tian, M.J. Zuo, Health condition prediction of gears using a recurrent neural network approach. IEEE Trans. Reliab. 59, 700–705 (2010)CrossRefGoogle Scholar
  54. 54.
    X. Zhang, L. Xiao, J. Kang, Degradation prediction model based on a neural network with dynamic windows. Sensors 15, 6996–7015 (2015)CrossRefGoogle Scholar
  55. 55.
    X. Zhang, J. Kang, E. Bechhoefer, J. Zhao, A new feature extraction method for gear fault diagnosis and prognosis. Eksploatacja i Niezawodnosc—Maint. Reliab. 16, 295–300 (2014)Google Scholar
  56. 56.
    S. Hussain, H.A. Gabbar, Vibration analysis and time series prediction for wind turbine gearbox prognostics. Int. J. Progn. Health Manage. 4, 69–79 (2013)Google Scholar
  57. 57.
    H. Link, W. LaCava, J. V. Dam, B. McNiff, S. Sheng, R. Wallen, W. McDade, S. Lambert, S. Butterfield, F. Oyague, Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing. Technical Report, NREL/TP-5000-51885 (2011)Google Scholar
  58. 58.
    W. Wang, Toward dynamic model-based prognostics for transmission gears, in Proceedings of SPIE, vol. 4733 (2002)Google Scholar
  59. 59.
    Z. Tian, M.J. Zuo, S. Wu, Crack propagation assessment for spur gears using model-based analysis and simulation. J. Intell. Manuf. 23, 239–253 (2012)CrossRefGoogle Scholar
  60. 60.
    P. Dempsey, R. Handschuh, A. Afjeh, Spiral bevel gear damage detection using decision fusion analysis, NASA/TM-2002-211814 (2002)Google Scholar
  61. 61.
    Y. Qu, D. He, J. Yoon, B.V. Hecke, J. Zhu, E. Bechhoefer, Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors—a comparative study. Sensors 14, 1372–1393 (2014)CrossRefGoogle Scholar
  62. 62.
    J. Zhu, J. Yoon, D. He, E. Bechhoefer, Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines. Wind Energy 18, 1131–1149 (2015)CrossRefGoogle Scholar
  63. 63.
    R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  64. 64.
    M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)CrossRefGoogle Scholar
  65. 65.
    E. Bechhoefer, D. He, A process for data driven prognostics, in Proceedings of the 2012 Conference of the Society for Machinery Failure Prevention Technology (MFPT) (2012), pp. 193–212Google Scholar
  66. 66.
    D. He, E. Bechhoefer, J. Mam, J. Zhu, A particle filtering based approach for gear prognostics, in Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, Chap 13 (2012)Google Scholar
  67. 67.
    M. Gasperin, D. Juricic, P. Boskoski, J. Vizintin, Model-based prognostics of gear health using stochastic dynamical models. Mech. Syst. Signal Process. 25, 537–548 (2011)CrossRefGoogle Scholar
  68. 68.
    D. Wang, Q. Miao, Q. Zhou, G. Zhou, An intelligent prognostic system for gear performance degradation assessment and remaining useful life estimation. J. Vib. Acoust. 137, 021004-1–02100402100412 (2015)Google Scholar
  69. 69.
    G. Kacprzynski, A. Sarlashkar, M. Roemer, A. Hess, B. Hardman, Predicting remaining life by fusing the physics of failure modeling with diagnostics. J. Miner. Metals Mater. Soc. 56, 29–35 (2004)CrossRefGoogle Scholar
  70. 70.
    F. Zhao, Z. Tian, E. Bechhoefer, Y. Zeng, An integrated prognostics method under time-varying operating conditions. IEEE Trans. Reliab. 64, 372–387 (2013)Google Scholar
  71. 71.
    F. Zhao, Z. Tian, Y. Zeng, A stochastic collocation approach for efficient integrated gear health prognosis. Mech. Syst. Signal Process. 39, 372–387 (2013)CrossRefGoogle Scholar
  72. 72.
    F. Zhao, Z. Tian, Y. Zeng, Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Trans. Reliab. 62, 146–159 (2013)CrossRefGoogle Scholar
  73. 73.
    E. Bechhoefer, D. He P. Dempsey, Gear health threshold setting based on a probability of false alarm, in Annual Conference of the Prognostics and Health Management Society (2011)Google Scholar
  74. 74.
    J. Qiu., C. Zhang, B. Seth, S.Y. Liang, Damage mechanics approach for bearing lifetime prognostics. Mech. Syst. Signal Process. 16, 817–829 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada

Personalised recommendations