Condition Monitoring of Structures Under Non-ideal Excitation Using Low Cost Equipment

  • Paulo J. Paupitz Gonçalves
  • Marcos Silveira


Monitoring the integrity of structures and machines is an evergrowing concern in engineering applications. Better knowledge of structural conditions allows optimized maintenance cycles, increasing the availability and return of investment, and preventing failure of various systems from manufacturing equipment to air and land vehicles. A common way of evaluating the integrity of mechanical systems is capturing and analyzing vibration signals during operation. Many of the condition monitoring systems are highly specialized, incurring high initial investment. In this context, the objective of this work is to demonstrate the possibility of using low-cost systems for monitoring the integrity of structures. The use of piezoelectric sensors to capture vibration signals is currently ubiquitous, and acquisition and conditioning of these signals can be performed by low cost and open source logic programmable microcontrollers such as Arduino. Structures coupled to non-ideal motors (such that the phenomenon of resonance capture can occur) are used in this study. Controlled structural modifications are performed by the addition of point masses along the length of the beam, and by the application of magnetomotive forces with the use of an electromagnet at a fixed point on the beam. The experimental data is compared to analytical and numerical results, and to an established commercial system, demonstrating the possibility of satisfactory monitoring of structural integrity with such system.


Condition monitoring Non-ideal excitation Sommerfeld effect Low cost 


  1. 1.
    C.R. Farrar, K. Worden, An introduction to structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365, 303–315 (2007)Google Scholar
  2. 2.
    C.R. Farrar, N.A.J. Lieven, Damage prognosis: the future of structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365, 623–632 (2007)Google Scholar
  3. 3.
    A. Rytter, P.H. Kirkegaard, Vibration Based Inspection of Civil Engineering Structures (Aalborg Universitetsforlag, 1994)Google Scholar
  4. 4.
    Y. Narkis, Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172, 549–558 (1994)CrossRefMATHGoogle Scholar
  5. 5.
    S.W. Doebling, A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30, 91–105 (1998)CrossRefGoogle Scholar
  6. 6.
    D.C. Zimmerman, M. Kaouk, Structural damage detection using a minimum rank update theory. ASME J. Vib. Acoust. 116, 222–231 (1994)CrossRefMATHGoogle Scholar
  7. 7.
    H. Sohn, C.R. Farrar, F. Hemez, J. Czarnecki, A Review of Structural Health Monitoring Literature: 1996–2001 (Los Alamos National Laboratory, 2004)Google Scholar
  8. 8.
    Y. Yan, L. Cheng, Z.Y. Wu, L.H. Yam, Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21, 2198–2211 (2007)CrossRefGoogle Scholar
  9. 9.
    B.P. Lathi, Sinais e Sistemas Lineares (Bookman, 2007)Google Scholar
  10. 10.
    M.R. Siegel, Estatística (McGraw-Hill, 1984)Google Scholar
  11. 11.
    L.J. Hadjileontiadis, E. Douka, A. Trochidis, Crack detection in beams using kurtosis. Comput. Struct. 83, 909–919 (2005)CrossRefGoogle Scholar
  12. 12.
    P.J.P. Gonçalves, M. Silveira, B.R. Pontes Jr., J.M. Balthazar, The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J. Sound Vib. 333, 5115–5129 (2014)CrossRefGoogle Scholar
  13. 13.
    P.J.P. Gonçalves, M. Silveira, E.A. Petrocino, J.M. Balthazar, Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica (2015)Google Scholar
  14. 14.
    J.M. Balthazar, D.T. Mook, H.I. Weber, R.M.L.R.F. Brasil, A. Fenili, D. Belato, J. Felix, An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    A. Sommerfeld, Beitrage zum dynamischen ausbau der festigkeislehre. Zeitschrift für Physik A Hadrons and Nuclei 46, 391–394 (1902)MATHGoogle Scholar
  16. 16.
    M. Zukovic, L. Cveticanin, Chaotic responses in a stable duffing system of non-ideal type. J. Vib. Control 13, 751–767 (2007)CrossRefMATHGoogle Scholar
  17. 17.
    M. Zukovic, L. Cveticanin, Chaos in non-ideal mechanical system with clearance. J. Vib. Control 15, 1229–1246 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    L. Cveticanin, Dynamics of the non-ideal mechanical systems: a review. J. Serbi. Soc. Comput. Mech. 4, 75–86 (2010)Google Scholar
  19. 19.
    M. Eckert, The Sommerfeld effect: theory and history of a remarkable resonance phenomenon. Eur. J. Phys. 17, 285–289 (1996)CrossRefGoogle Scholar
  20. 20.
    I.I. Blekhman, D.A. Indeitsev, A.L. Fradkov, Slow motions in systems with inertial excitation of vibrations. J. Mach. Manuf. Reliab. 37, 21–27 (2008)Google Scholar
  21. 21.
    M. Dimentberg, L. McGovern, R. Norton, J. Chapdelaine, R. Harrison, Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13, 171–187 (1997)CrossRefMATHGoogle Scholar
  22. 22.
    K.A. Castão, L.C. Goes, J.M. Balthazar, A note on the attenuation of the sommerfeld effect of a non-ideal system taking into account a MR damper and the complete model of a DC motor. J. Vib. Control 17, 1112–1118 (2011)CrossRefMATHGoogle Scholar
  23. 23.
    M. Tsuchida, K.L. Guilherme, J.M. Balthazar, On chaotic vibrations of a non-ideal system with two degrees of freedom: resonance and Sommerfeld effect. J. Sound Vib. 282, 1201–1207 (2005)CrossRefGoogle Scholar
  24. 24.
    F.H. Moraes, B.R. Pontes Jr., M. Silveira, J.M. Balthazar, R.M.L.R.F. Brasil, Influence of ideal and non-ideal excitation sources on the dynamics of a nonlinear vibro-impact system. J. Theor. Appl. Mech. 51, 763–774 (2013)Google Scholar
  25. 25.
    J. Palacios, J.M. Balthazar, R.M.L.R.F. Brasil, On non-ideal and non-linear portal frame dynamics analysis using Bogoliubov averaging method. J. Braz. Soc. Mech. Sci. Eng. 24, 257–265 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Quinn, R. Rand, J. Bridge, The dynamics of resonant capture. Nonlinear Dyn. 8, 1–20 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Kerschen, D.M. McFarland, J.J. Kowtko, Y.S. Lee, L.A. Bergman, A.F. Vakakis, Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299, 822–838 (2007)CrossRefMATHGoogle Scholar
  28. 28.
    Y.S. Lee, G. Kerschen, A.F. Vakakis, P. Panagopoulos, L. Bergman, D.M. McFarland, Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D Nonlinear Phenom. 204, 41–69 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    S.R. Bishop, U. Galvanetto, The behaviour of nonlinear oscillators subjected to ramped forcing. Meccanica 28, 249–256 (1993)CrossRefMATHGoogle Scholar
  30. 30.
    J.L. Felix, J.M. Balthazar, R.M.L.R.F. Brasil, On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation. J. Sound Vib. 282, 1285–1292 (2005)CrossRefGoogle Scholar
  31. 31.
    J.L.P. Felix, J.M. Balthazar, Comments on nonlinear dynamics of a non-ideal duffing-rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319, 1136–1149 (2009)CrossRefGoogle Scholar
  32. 32.
    T. Krasnopolskaya, Chaos in acoustic subspace raised by the Sommerfeld-Kononenko effect. Meccanica 41, 299–310 (2006)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    J.M. Ko, C.W. Wong, H.F. Lam, Damage detection in steel framed structures by vibration measurement approach, in Proceedings of 12th International Modal Analysis Conference (1994), pp. 280–286Google Scholar
  34. 34.
    J. Curie, P. Curie, Développement, par pression, de lélectricité polaire dans les cristaux hémièdres á faces inclinèes. Comptes Rendus 91, 294–295 (1880)Google Scholar
  35. 35.
    G. Lippmann, Principe de la conservation de l’álectricité, ou second principe de la théorie des phénomènes électriques. J. de Physique Théorique et Appliquée 10, 381–394 (1881)CrossRefGoogle Scholar
  36. 36.
    Imran Patel, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device, Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment (InTech, 2011)Google Scholar
  37. 37.
    G. Park, C.R. Farrar, F.L. Scalea, S. Coccia, Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 15, 1673–1683 (2006)CrossRefGoogle Scholar
  38. 38.
    D. Wang, Health monitoring of reinforced concrete structures based on PZT admittance signal, in Proceedings of the SPIE, vol. 7493 (2009)Google Scholar
  39. 39.
    A. Guechaichia, I. Trendafilova, A simple method for enhanced vibration-based structural health monitoring. J. Phys. Conf. Ser. 305, 012073 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringSão Paulo State University – UNESPSão PauloBrazil

Personalised recommendations