Probabilistic Prognostics and Health Management: A Brief Summary

  • Fisseha M. Alemayehu
  • Stephen Ekwaro-Osire


This chapter gives a brief summary of probabilistic prognostics and health management (PPHM) and presents a framework to implement PPHM to predict remaining useful life (RUL) of energy systems efficiently and with minimal uncertainty. The chapter also presents the way forward by indicating that an interdisciplinary research is critical so as consortium of multidiscipline experts will come together and discuss the implementation of the framework for enhanced RUL prediction. The prediction of RUL with minimal uncertainty will significantly lower or avoid the downtime of energy systems and thereby reduce the cost of energy. The reduction in cost will make renewable energy, like wind energy, cheaper.


Remaining useful life Uncertainty Probability Prognostics and health management 


  1. 1.
    S. Sankararaman, K. Goebel, Why is the remaining useful life prediction uncertain?, in Annual Conference of the Prognostics and Health Management Society 2013 (2012), pp. 1–13Google Scholar
  2. 2.
    S. Sankararaman, M.J. Daigle, K. Goebel, Uncertainty quantification in remaining useful life prediction using first-order reliability methods. IEEE Trans. Reliab. 63(2), 603–619 (2014)CrossRefGoogle Scholar
  3. 3.
    M.J. Daigle, K. Goebel, A model-based prognostics approach applied to pneumatic valves. Int. J. Progn. Health Manage. 2, 1–16 (2011)Google Scholar
  4. 4.
    X. Guan, R. Jha, Y. Liu, Probabilistic fatigue damage prognosis using maximum entropy approach. J. Intell. Manuf. 23(2), 163–171 (2012)CrossRefGoogle Scholar
  5. 5.
    J.Y. Jung, C.H. Chin, J. Cardoso, An entropy-based uncertainty measure of process models. Inf. Process. Lett. 111(3), 135–141 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    W.S. Parker, Ensemble modeling, uncertainty and robust predictions. Wiley Interdiscip. Rev.: Clim. Change 4(3), 213–223 (2013)Google Scholar
  7. 7.
    F.M. Alemayehu, S. Ekwaro-Osire, Loading and design parameter uncertainty in the dynamics and performance of high-speed-parallel-helical stage of a wind turbine gearbox. J. Mech. Design 136(9), 091002-091002-13 (2014)Google Scholar
  8. 8.
    F.M. Alemayehu, S. Ekwaro-Osire, Probabilistic performance of helical compound planetary system in wind turbine. J. Comput. Nonlinear Dyn. 10(4), 041003-041003-12 (2015)Google Scholar
  9. 9.
    D. An, N.H. Kim, J.H. Choi, Statistical aspects in neural network for the purpose of prognostics. J. Mech. Sci. Technol. 29(4), 1369–1375 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Liu, A. Saxena, K. Goebel, B. Saha, W. Wang, An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries (2010), pp. 0–9Google Scholar
  11. 11.
    S. Sheng, P. Veers, Wind turbine drivetrain condition monitoring—an overview, in Mechanical Failures Prevention Group: Applied Systems Health Management Conference (2011)Google Scholar
  12. 12.
    D. An, J.H. Choi, N.H. Kim, Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng. Syst. Saf. 115, 161–169 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Daigle, A. Saxena, K. Goebel, An efficient deterministic approach to model-based prediction uncertainty estimation, in Annual Conference of the Prognostics (2012), pp. 1–10Google Scholar
  14. 14.
    F. Zhao, Z. Tian, Y. Zeng, Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Trans. Reliab. 62(1), 146–159 (2013)CrossRefGoogle Scholar
  15. 15.
    F.M. Alemayehu, S. Ekwaro-Osire, Uncertainty considerations in the dynamic loading and failure of spur gear pairs. J. Mech. Design 135(8) (2013)Google Scholar
  16. 16.
    S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    D. Riha, B. Bichon, J. McFarland, S. Fitch, NESSUS Theoretical Manual (2010)Google Scholar
  18. 18.
    B. Thacker, D. Riha, S. Fitch, L. Huyse, J. Pleming, Probabilistic engineering analysis using the NESSUS software. Struct. Saf. 28(1–2), 83–107 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Engineering, Computer Science and MathematicsWest Texas A&M UniversityCanyonUSA
  2. 2.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations