A VNS with Parallel Evaluation of Solutions for the Inverse Lighting Problem

  • Ignacio Decia
  • Rodrigo Leira
  • Martín Pedemonte
  • Eduardo Fernández
  • Pablo Ezzatti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

Lighting design is a key issue in architectural design. The Inverse Lighting Problem (ILP) is an optimization problem that arises in lighting design and consist in finding the best configuration of lights that meets a set of goals that designers would like to achieve. In this paper, we present three different VNS that evaluate several solutions in parallel, improving the performance of a traditional VNS that has already been proposed for solving the ILP. These methods exploit the block matrix multiplication algorithms in order to increase the computational intensity of the algorithm and are specially well suited for parallel computation in GPUs architectures. The experimental analysis performed in two CPU/GPU hardware platforms for two scenarios with different complexity shows that the proposed methods provide fast results and are able to allow the interactive lighting design.

Keywords

Inverse Lighting Problems Graphics processing unit Variable neighborhood search CUDA GPGPU 

Notes

Acknowledgements

Authors acknowledge partial support from PEDECIBA – Uruguay and project ANII FSE_1_2014_1_102344.

References

  1. 1.
    Fernández, E., Besuievsky, G.: Inverse lighting design for interior buildings integrating natural and artificial sources. Comp. Graph. 36(8), 1096–1108 (2012)CrossRefGoogle Scholar
  2. 2.
    Fernández, E., Besuievsky, G.: Efficient inverse lighting: a statistical approach. Autom. Constr. 37, 48–57 (2014)CrossRefGoogle Scholar
  3. 3.
    Fernández, E.: Low-rank radiosity. In: Proceedings of the IV Iberoamerican Symposium in Computer Graphics, pp. 55–62 (2009)Google Scholar
  4. 4.
    Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Kirk, D.B., Wen-mei, W.H.: Programming Massively Parallel Processors: A Hands-on Approach. Newnes (2012)Google Scholar
  6. 6.
    Cohen, M., Wallace, J., Hanrahan, P.: Radiosity and Realistic Image Synthesis. Academic Press Professional Inc., San Diego (1993)MATHGoogle Scholar
  7. 7.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benner, P., Ezzatti, P., Quintana-Ortí, E., Remón, A.: On the impact of optimization on the time-power-energy balance of dense linear algebra factorizations. In: Aversa, R., Kołodziej, J., Zhang, J., Amato, F., Fortino, G. (eds.) ICA3PP 2013. LNCS, vol. 8286, pp. 3–10. Springer, Cham (2013). doi: 10.1007/978-3-319-03889-6_1CrossRefGoogle Scholar
  9. 9.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC, Boca Raton (2011)MATHGoogle Scholar
  10. 10.
    Yoo, S., Harman, M., Ur, S.: Highly scalable multi objective test suite minimisation using graphics cards. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 219–236. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23716-4_20CrossRefGoogle Scholar
  11. 11.
    Pedemonte, M., Luna, F., Alba, E.: Systolic genetic search for software engineering: the test suite minimization case. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 678–689. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45523-4_55Google Scholar
  12. 12.
    Pedemonte, M., Luna, F., Alba, E.: A systolic genetic search for reducing the execution cost of regression testing. Appl. Soft Comput. 49, 1145–1161 (2016)CrossRefGoogle Scholar
  13. 13.
    García López, F., Melián Batista, B., Moreno Pérez, J., Moreno Vega, J.: The parallel variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Wang, X., Tang, L.: A population-based variable neighborhood search for the single machine total weighted tardiness problem. Comput. Oper. Res. 36(6), 2105–2110 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Luong, T.V.: Parallel metaheuristics on GPU. Ph.D. thesis, INRIA Lille (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ignacio Decia
    • 1
  • Rodrigo Leira
    • 1
  • Martín Pedemonte
    • 1
  • Eduardo Fernández
    • 1
  • Pablo Ezzatti
    • 1
  1. 1.Instituto de ComputaciónUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations