Advertisement

Presenting the ECO: Evolutionary Computation Ontology

  • Anil Yaman
  • Ahmed Hallawa
  • Matt Coler
  • Giovanni Iacca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

A well-established notion in Evolutionary Computation (EC) is the importance of the balance between exploration and exploitation. Data structures (e.g. for solution encoding), evolutionary operators, selection and fitness evaluation facilitate this balance. Furthermore, the ability of an Evolutionary Algorithm (EA) to provide efficient solutions typically depends on the specific type of problem. In order to obtain the most efficient search, it is often needed to incorporate any available knowledge (both at algorithmic and domain level) into the EA. In this work, we develop an ontology to formally represent knowledge in EAs. Our approach makes use of knowledge in the EC literature, and can be used for suggesting efficient strategies for solving problems by means of EC. We call our ontology “Evolutionary Computation Ontology” (ECO). In this contribution, we show one possible use of it, i.e. to establish a link between algorithm settings and problem types. We also show that the ECO can be used as an alternative to the available parameter selection methods and as a supporting tool for algorithmic design.

Keywords

Ontology Knowledge representation Evolutionary computation 

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 665347.

References

  1. 1.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  2. 2.
    Sowa, J.F.: Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, San Mateo (2014)zbMATHGoogle Scholar
  3. 3.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Mecocci, P., Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J. Biomed. Inf. 45(3), 429–446 (2012)CrossRefGoogle Scholar
  5. 5.
    Liao, S.H.: Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Syst. Appl. 28(1), 93–103 (2005)CrossRefGoogle Scholar
  6. 6.
    Jin, Y.: Knowledge Incorporation in Evolutionary Computation, vol. 167. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  7. 7.
    Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)CrossRefGoogle Scholar
  8. 8.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  9. 9.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  10. 10.
    Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design of the heuristiclab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence, vol. 6, pp. 197–261. Springer International Publishing, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Kaur, G., Chaudhary, D.: Evolutionary computation ontology: e-learning system. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6, September 2015Google Scholar
  12. 12.
    Roussey, C., Pinet, F., Kang, M.A., Corcho, O.: An introduction to ontologies and ontology engineering. In: Falquet, G., Métral, C., Teller, J., Tweed, C. (eds.) Ontologies in Urban Development Projects, vol. 1, pp. 9–38. Springer, London (2011)CrossRefGoogle Scholar
  13. 13.
    Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)Google Scholar
  14. 14.
    Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17 (1993)Google Scholar
  15. 15.
    Pan, J.Z.: Resource description framework. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 71–90. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. W3C recommendation 10(10) (2004)Google Scholar
  17. 17.
    The World Wide Web Consortium (W3C) (2016). Accessed 14 Aug 2016. https://www.w3.org/
  18. 18.
    Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68234-9_39CrossRefGoogle Scholar
  19. 19.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)zbMATHGoogle Scholar
  20. 20.
    Johnson, J., Louis, S.J.: Case-initialized genetic algorithms for knowledge extraction and incorporation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 57–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Ann. Math. Artif. Intell. 5(1), 1–26 (1992)CrossRefzbMATHGoogle Scholar
  22. 22.
    Falco, I.D., Cioppa, A.D., Tarantino, E.: Mutation-based genetic algorithm: performance evaluation. Appl. Soft Comput. 1(4), 285–299 (2002)CrossRefGoogle Scholar
  23. 23.
    Bäck, T., Eiben, A.E., van der Vaart, N.A.L.: An empirical study on GAs “without parameters”. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Proceedings of the 6th International Conference on Parallel Problem Solving from Nature (PPSN VI), London, UK, pp. 315–324. Springer-Verlag (2000). ISBN: 3-540-41056-2Google Scholar
  24. 24.
    Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)CrossRefGoogle Scholar
  25. 25.
    Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 815–822. ACM (2014)Google Scholar
  26. 26.
    Asmus, J., Borchmann, D., Sbalzarini, I.F., Walther, D.: Towards an FCA-based recommender system for black-box optimization. In: Workshop Notes, p. 35 (2014)Google Scholar
  27. 27.
    Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 405–421 (2004)CrossRefGoogle Scholar
  28. 28.
    Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)CrossRefGoogle Scholar
  29. 29.
    Neumüller, C., Wagner, S., Kronberger, G., Affenzeller, M.: Parameter meta-optimization of metaheuristic optimization algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 367–374. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27549-4_47CrossRefGoogle Scholar
  30. 30.
    Inspyred: Bio-inspired Algorithms in Python (2016). Accessed 11 Nov 2016. http://pythonhosted.org/inspyred/
  31. 31.
    Matlab Genetic Algorithm Toolbox (2016). Accessed 11 Nov 2016. https://www.mathworks.com/help/gads/genetic-algorithm.html
  32. 32.
    Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: presentation of the noiseless functions. Technical report, Citeseer (2010)Google Scholar
  33. 33.
    Zhang, J., Chung, H.S., Lo, A.W., Hu, B.: Fuzzy knowledge incorporation in crossover and mutation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, vol. 167, pp. 123–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)CrossRefGoogle Scholar
  35. 35.
    He, J., Kang, L.: On the convergence rates of genetic algorithms. Theor. Comput. Sci. 229(1), 23–39 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. PPSN 92, 15–25 (1992)Google Scholar
  37. 37.
    Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separable functions in parallel?. In: Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, FOGA XII 2013, pp. 51–64. ACM, New York (2013)Google Scholar
  38. 38.
    Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, IEEE World Congress on Computational Intelligence, vol. 1, pp. 57–62, June 1994Google Scholar
  39. 39.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Technical Report, Nanyang Technological University, Singapore, AND KanGAL Report 2005005, IIT Kanpur, India, May 2005Google Scholar
  40. 40.
    Gates, G.H., Merkle, L.D., Lamont, G.B., Pachter, R.: Simple genetic algorithm parameter selection for protein structure prediction. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 620–624. IEEE (1995)Google Scholar
  41. 41.
    Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and population size reduction in compact differential evolution. In: 2011 IEEE Workshop on Memetic Computing (MC), pp. 1–8. IEEE (2011)Google Scholar
  42. 42.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anil Yaman
    • 1
    • 2
  • Ahmed Hallawa
    • 3
  • Matt Coler
    • 2
    • 4
  • Giovanni Iacca
    • 2
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.INCAS3AssenThe Netherlands
  3. 3.Chair for Integrated Signal Processing SystemsRWTH Aachen UniversityAachenGermany
  4. 4.Campus FryslânUniversity of GroningenLeeuwardenThe Netherlands

Personalised recommendations