Advertisement

Two-sample tests for multivariate functional data

  • Qing Jiang
  • Simos G. Meintanis
  • Lixing Zhu
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

We consider two–sample tests for functional data with observations which may be uni– or multi–dimensional. The new methods are formulated as L2–type criteria based on empirical characteristic functions and are convenient from the computational point of view.

Keywords

Functional data Empirical characteristic function Two–sample problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benko, M., Härdle, W., Kneip, A.: Common functional principal components. Ann. Stat. 37, 1–34 (2009)Google Scholar
  2. 2.
    Berrendero, J.R., Justel, A., Svarc, M.: Principal components for multivariate functional data. Comput. Stat. Data An. 55, 2619–2634 (2011)Google Scholar
  3. 3.
    Chiou, J.M.,Müller, H.G.: Linear manifold modeling of multivariate functional data. J. Roy. Stat. Soc. B. 76, 605–626 (2014)Google Scholar
  4. 4.
    Hall, P., Van Keilegom, I.: Two–sample tests in functional data analysis starting from discrete data. Stat. Sinica. 17, 1511–1531 (2007)Google Scholar
  5. 5.
    Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer Series in Statistics, Springer, New York (2012)Google Scholar
  6. 6.
    Horváth, L., Kokoszka, P., Reeder, R.: Estimation of the mean of functional time series and a two sample problem. J. Roy. Stat. Soc. B. 75, 103–122 (2013)Google Scholar
  7. 7.
    Jacques, J., Preda, C.: Model–based clustering for multivariate functional data. Comput. Stat. Data An. 71, 92–106 (2014)Google Scholar
  8. 8.
    Kraus, D., Panaretos, V.M.: Dispersion operators and resistant second–order functional data analysis. Biometrika. 99, 813–832 (2012)Google Scholar
  9. 9.
    Hušková, M., Meintanis, S.G.: Tests for the multivariate k-sample problem based on the empirical characteristic function. J. NonParametr. Statist. 20, 263–277 (2008)Google Scholar
  10. 10.
    Meintanis, S.G.: Permutation tests for homogeneity based on the empirical characteristic function. J. Nonparametr. Statist. 17, 583–592 (2005)Google Scholar
  11. 11.
    Panaretos, V.M., Kraus, D., Maddocks, J.H.: Second–order comparison of Gaussian random functions and the geometry of DNA minicircles. J. Am. Stat. Assoc. 105, 670–682 (2010)Google Scholar
  12. 12.
    Pomann, G.M., Staicu, A.M., Ghosh, S.: Two–sample hypothesis testing for functional data with application to a diffusion tensor imaging study of multiple sclerosis. J. Roy. Stat. Soc. C-App. 65, 395–414 (2016)Google Scholar
  13. 13.
    Székely G., Rizzo, M.: Hierarchical clustering via joint between–within distances: Extending Ward’s minimum variance method. J. Classif. 22, 151–183 (2005)Google Scholar
  14. 14.
    Székely G., Rizzo, M.: Energy statistics: A class of statistics based on distances. J. Stat. Plan. Infer. 143, 249–272 (2013)Google Scholar
  15. 15.
    Tenreiro, C.: On the choice of the smoothing parameter for the BHEP goodnessof-fit test. Computat. Statist. Dat. Anal. 53, 1038–1053 (2009)Google Scholar
  16. 16.
    Zhang, C., Peng, H., Zhang, J.T.: Two–sample tests for functional data. Commun. Stat.–Theor. M. 39, 559–578 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of StatisticsBeijing Normal UniversityBeijingChina
  2. 2.Department of EconomicsNational and Kapodistrian University of AthensAthensGreece
  3. 3.Unit for Business Mathematics and InformaticsNorth–West UniversityPotchefstroomSouth Africa
  4. 4.Department of MathematicsHong Kong Baptist UniversityHong KongChina

Personalised recommendations