Skip to main content

Rock Physics Modeling of Ankleshwar Reservoir: A CO2-EOR Perspective

  • Chapter
  • First Online:
Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration

Part of the book series: Springer Theses ((Springer Theses))

  • 638 Accesses

Abstract

Enhanced oil recovery (EOR) operations offer a fundamental challenge in the study of reservoir characterization primarily due to the lack of understanding of inherent complexity in the estimation of reservoir parameters. Rock physics models play a crucial role in solving production problems and reducing the ambiguities of fluids within reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen CF, Grosfeld V, Wijngaarden AJV, Haaland AN (2009) Interactive interpretation of 4D prestack inversion data using rock physics templates, dual classification, and real-time visualization. Lead Edge 28(8):898–906

    Article  Google Scholar 

  • Avseth P (2000) Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. PhD thesis, Stanford University, p 181

    Google Scholar 

  • Avseth P, Dvorkin J, Mavko G, Rykkje J (2000) Rock physics diagnostics of North Sea sands: link between microstructure and seismic properties. Geophys Res Lett 27(17):2761–2764

    Article  Google Scholar 

  • Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation: applying rock physics to reduce interpretation risk. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Avseth P, Mukerji T, Mavko G, Dvorkin J (2010) Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—a review of selected models and suggested workflows. Geophysics 75(5):75A31–75A47

    Google Scholar 

  • Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57(11):1396–1408

    Article  Google Scholar 

  • Berryman JG (1980) Long-wavelength propagation in composite elastic media. J Acoust Soc Am 68:1809–1831

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range and II. Higher-frequency range. J Acou Soc Am 28:168–191

    Google Scholar 

  • Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581

    Article  Google Scholar 

  • Chi X, Han D (2009) Lithology and fluid differentiation using rock physics templates. Lead Edge 28:60–65

    Article  Google Scholar 

  • Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48(4):803–808

    Article  Google Scholar 

  • Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61:1363–1370

    Article  Google Scholar 

  • Dvorkin J, Nur A, Yin H (1994) Effective properties of cemented granular materials. Mech Mater 18:351–366. doi:10.1016/0167-6636(94)90044-2

    Article  Google Scholar 

  • Gassmann F (1951) Ãœber die elastizität poröser medien: Vierteljahrss-chrift der Naturforschenden Gesellschaft in Zurich 96, 1–23. The English translation of this paper is available at http://sepwww.stanford.edu/sep/berryman/PS/gassmann.pdf

  • Greenberg ML, Castagna JP (1992) Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophys Prospect 40(2):195–209

    Article  Google Scholar 

  • Han D (1986) Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. PhD thesis, Stanford University

    Google Scholar 

  • Han DH, Batzle ML (2004) Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69(2):40–398

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase materials. J Mech Phys Solid 11:127–140

    Google Scholar 

  • Hill R (1952) The elastic behavior of crystalline aggregate. Proc Phys Soc Lond A 65:349–354

    Article  Google Scholar 

  • Hossain J (2011) Rock physics modelling of the North Sea greensand. PhD thesis, Department of Environmental Engineering, Technical University of Denmark

    Google Scholar 

  • Klimentos T (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves. Geophysics 56:1930–1939

    Article  Google Scholar 

  • Krief M, Garat J, Stellingwerff J, Ventre J (1990) A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Anal 31:355–369

    Google Scholar 

  • Kuster GT, ToksÓ§z MN (1974) Velocity and attenuation of seismic waves in two-phase media. Geophysics 39:587–618

    Article  Google Scholar 

  • Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56:1940–1949

    Article  Google Scholar 

  • Mavko G, Mukerji T (1998) Bounds on low frequency seismic velocities in partially saturated rocks. Geophysics 63(3):918–924

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The Rock physics handbook: tools for seismic analysis of Porous media, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Meneses CCC (2013) Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi field, Louisiana. Master thesis, Colorado School of Mines

    Google Scholar 

  • Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268

    Google Scholar 

  • Mukerji T, Berryman JG, Mavko G, Berge PA (1995a) Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophys Res Lett 22:555–558

    Article  Google Scholar 

  • Mukerji T, Mavko G, Mujica D, Lucet N (1995b) Scale-dependent seismic velocity in heterogeneous media. Geophysics 60:1222–1233

    Article  Google Scholar 

  • Ødegaard E, Avseth P (2004) Well log and seismic data analysis using rock physics templates. First Break 22:37–43

    Google Scholar 

  • Reuss A (1929) Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Ang Math Mech 9:49–58

    Article  Google Scholar 

  • Smith TM, Sondergeld CH, Rai CS (2003) Gassmann fluid substitutions: a tutorial. Geophysics 68:430–440

    Article  Google Scholar 

  • Vernik L, Nur A (1992) Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities. AAPG Bull. 76:1295–1309

    Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    Google Scholar 

  • Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solid 35:213–226

    Article  Google Scholar 

  • Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43:91–118

    Article  Google Scholar 

  • Zimmerman RW (1991) Elastic moduli of a solid containing spherical inclusions. Mech Mater 12:17–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ganguli, S.S. (2017). Rock Physics Modeling of Ankleshwar Reservoir: A CO2-EOR Perspective. In: Integrated Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-55843-1_5

Download citation

Publish with us

Policies and ethics