Skip to main content

Characterization of Genetic Resources

  • Chapter
  • First Online:
Genetic Resources of Neotropical Fishes

Abstract

The genetic information contained in structural genes, gene regulatory regions, and noncoding DNA is what makes living beings similar and also what differentiates all the species on planet Earth. The rich diversity of life is still in the process of discovery; it has been the focus of increasing attention by sectors of society addressing developmental policies that often are detrimental to the environment. Conservation of genetic resources does not imply only conservation of species diversity, but also the genetic differences between populations of the same species or between animal breeds, strains and varieties. Therefore, knowledge of population differentiation and the temporal and spatial extent of gene flow are essential to management decision-making. As the methodologies for genetic diversity assessment have been developed in the last decades, genetic diversity estimation within and among populations has assumed central importance in conservation programs for genetic resources. The aim is to reveal putative genetic units so that genetic erosion of genetically unique populations can be prevented (Bijlsma and Volker Loeschcke 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim, J., Robertson, B. C., J-Al, S., & Gemmell, N. J. (2009). Fast, cost effective development of species-specific microsatellite markers by genomic sequencing. Biotechnology Techniques, 46, 185–191.

    CAS  Google Scholar 

  • Abdul-Muneer, P. M. (2014). Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genetics Research International, 2014, 1–11.

    Article  Google Scholar 

  • Abreu, M. M., Pereira, L. H. G., Vila, V. B., Foresti, F., & Oliveira, C. (2009). Genetic variability of two populations of Pseudoplatystoma reticulatum from the upper Paraguay River basin. Genetics and Molecular Biology, 32, 868–873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams, R. I., & Hadley, E. A. (2013). Genetic diversity within vertebrate species is greater at lower latitudes. Evolutionary Ecology, 27, 133–143.

    Article  Google Scholar 

  • Allendorf, F. W., Mitchell, N., Ryman, N., & Stahl, G. (1977). Isozyme loci in brown trout (Salmo trutta L.): Detection and interpretation for population data. Hereditas, 6, 179–190.

    Google Scholar 

  • Allendorf, F. W., Ryman, N., & Utter, F. M. (1987). Genetics and fishery management: Past, present and future. In N. Ryman & F. Utter (Eds.), Population genetics and fishery management (pp. 1–19). Seattle: University of Washington Press.

    Google Scholar 

  • Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697–709.

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Val, V. M. F., Val, A. L., & Hochachka, P. W. (1993). Hypoxia tolerance in amazon fishes: Status of an under explored biological. In W. Peter, P. L. Hochachka, T. Sick, M. Rosenthal, & G. V. D. Thillart (Eds.), Surviving hypoxia: Mechanisms of control and adaptation (pp. 435–445). Boca Raton: CRC Press.

    Google Scholar 

  • Almeida, F. S., Fungaro, M. H. P., & Sodré, L. M. K. (2001). RAPD and isoenzyme analysis of genetic variability in three allied species of catfish (Siluriformes: Pimelodidae) from the Tibagi River, Brazil. Journal of Zoology (London), 253, 113–120.

    Article  Google Scholar 

  • Almeida, F. S., Sodré, L. M. K., & Contel, E. P. B. (2003). Population structure analysis of Pimelodus maculatus (Pisces, Siluriformes) from the Tietê and Paranapanema rivers (Brazil). Genetics and Molecular Biology, 26, 301–305.

    Article  Google Scholar 

  • Altukhov, Y. U. P., Limansky, V. V., Payusova, A. N., & Truveller, K. A. (1969). Immunogenetical analysis of intraspecies differentiation of the European anchovy from the black and Azov seas. II elementary populations of anchovy and their place in genetic-populational structure of species. Genetics URSS, 6, 265–278.

    Google Scholar 

  • Altukhov, Y. P. (1981). The stock concept from the view point of population genetics. Canadian Journal of Aquatic Sciences, 38, 1523–1538.

    Article  Google Scholar 

  • Amado, M. V., Hrbek, T., Gravena, W., Fantin, C., Assunção, E. N., Astolfi-Filho, S., & Farias, I. P. (2008). Isolation and characterization of microsatellite markers for the ornamental discus fish Symphysodon discus and cross-species amplification in other Heroini cichlid species. Molecular Ecology Resources, 8, 1451–1453.

    Article  CAS  PubMed  Google Scholar 

  • Amos, W., Hoffman, J. I., Frodsham, A., Zhang, L., Best, S., & Hill, A. V. S. (2007). Automated binning of microsatellite alleles: Problems and solutions. Molecular Ecology Notes, 7, 10–14.

    Google Scholar 

  • Araripe, J., Rêgo, P. S., Queiroz, H., Sampaio, I., & Schneider, H. (2013). Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers. PloS One, 8, e54470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber, W. (1965). Host-controlled modification of bacteriophage. Annual Review of Microbiology, 19, 365–378.

    Google Scholar 

  • Ashikaga, F. Y., Orsi, M. L., Oliveira, C., Senhorini, J. A., & Foresti, F. (2015). The endangered species Brycon Orbignyanus: Genetic analysis and definition of priority areas for conservation. Environmental Biology of Fishes, 98, 1845–1855.

    Google Scholar 

  • Aspinwall, N. (1974). Genetic analysis of North American populations of the pink salmon, Oncorhynchus gorbuscha, possible evidence for the neutral mutation-random drift hypothesis. Evolution, 28, 295–305.

    PubMed  Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

    Article  Google Scholar 

  • Avise, J. C. (2004). Molecular markers, natural history, and evolution (2nd ed.). Sunderland: Sinauer Associates, 684 p.

    Google Scholar 

  • Ballard, J. W., & Kreitman, M. (1995). Is mitochondrial DNA a strictly neutral marker? Trends in Ecology & Evolution, 10, 485–488.

    Article  CAS  Google Scholar 

  • Balloux, F., & Lugon-Moulin, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology, 11, 155–165.

    Article  PubMed  Google Scholar 

  • Barbará, T., Palma-Silva, C., Paggi, G. M., Bered, F., Fay, M. F., & Lexer, C. (2007). Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Molecular Ecology, 16, 3759–3767.

    Article  PubMed  Google Scholar 

  • Barbosa, A. C. D. R., Corrêa, T. C., Galzerani, F., Galetti Jr., P. N., & Hatanaka, T. (2006). Thirteen polymorphic microsatellite loci in the Neotropical fish Prochilodus argenteus (Characiformes, Prochilodontidae). Molecular Ecology Notes, 6, 936–938.

    Article  CAS  Google Scholar 

  • Barbosa, A. C. D. R., Galzerani, F., Corrêa, T. C., Galetti, P. M., Jr., & Hatanaka, T. (2008). Description of novel microsatellite loci in the Neotropical fish Prochilodus argenteus and cross-amplification in P. costatus and P. lineatus. Genetics and Molecular Biology, 31(1 (suppl)), 357–360.

    Google Scholar 

  • Barroso, R. M., Hilsdorf, A. W. S., Moreira, A., Moreira, H. L. M., Mello, A. M., Guimarães, S. E. F., Cabello, P. H., & Traub-Cseko, Y. M. (2003). Identification and characterization of microsatellites loci in Brycon opalinus (Cuvier, 1819) (Characiforme, Characidae, Bryconiae). Molecular Ecology Notes, 3, 297–298.

    Google Scholar 

  • Barroso, R. M., Hilsdorf, A. W. S., Moreira, H. L. M., Cabello, P. H., & Traub-Cseko, Y. M. (2005). Genetic diversity of wild and cultured populations of Brycon opalinus (Cuvier, 1819) (Characiforme, Characidae, Bryconiae) using microsatellites. Aquaculture, 247, 51–65.

    Article  CAS  Google Scholar 

  • Barson, N. J., Cable, J., & Oosterhout, V. C. (2009). Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: Evidence for a dynamic source–sink metapopulation structure, founder events and population bottlenecks. Journal of Evolutionary Biology, 22, 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Bartley, D. M., Nguyen, T. T. T., Halwart, M., & Silva, S. S. (2009). Use and exchange of aquatic genetic resources in aquaculture: Information relevant to access and benefit sharing. Reviews in Aquaculture, 1, 157–162.

    Article  Google Scholar 

  • Basavaraju, Y., Penman, D. J., & Mair, G. C. (2002). Genetic status and strategies for improvement of common carp (Cyprinus carpio) in Karnataka, India – evaluation of stocks for the development of a breeding programme. In D. J. Penman, M. G. Hussain, B. J. McAndrew, & M. A. Mazid (Eds.), Proceedings of a workshop on genetic management and improvement strategies for exotic carps in Bangladesh (pp. 29–36). Mymensingh: Bangladesh Fisheries Research Institute.

    Google Scholar 

  • Batista, J. S., & Alves-Gomes, J. A. (2006). Phylogeography of Brachyplatystoma rousseauxii (Siluriformes – Pimelodidae) in the Amazon Basin offers preliminary evidence for the first case of “homing” for an Amazonian migratory catfish. Genetics and Molecular Research, 5, 723–740.

    Google Scholar 

  • Batista, J. S., Farias, I. P., Formiga-Aquin, O. K., Sous, A. C. B., & Alves-Gomes, J. A. (2010). DNA microsatellite markers for “dourada” (Brachyplatystoma rousseauxii, Siluriformes: Pimelodidae), a migratory catfish of utmost importance for fisheries in the Amazon: Development, characterization and inter-specific amplification. Conservation Genetics Resources, 2, 5–10.

    Article  Google Scholar 

  • Becher, S. A., Russell, S. T., & Magurran, A. E. (2002). Isolation and characterization of polymorphic microsatellites in the Trinidadian guppy (Poecilia reticulata). Molecular Ecology Notes, 2, 456–458.

    Article  CAS  Google Scholar 

  • Beckenbach, A. T. (1991). Rapid mtDNA sequence analysis of fish populations using the polymerase chain reaction (PCR). Canadian Journal of Fisheries and Aquatic Sciences, 48(Suppl. 1), 95–98.

    Article  CAS  Google Scholar 

  • Begg, G. A., Friedland, K. D., & Pearce, J. B. (1999). Stock identification and its role in stock assessment and fisheries management: An overview. Fisheries Research, 43, 1–8.

    Article  Google Scholar 

  • Beheregaray, L. B., Schwartz, T. S., Möller, L. M., Call, D., Chao, N. L., & Caccone, A. A. (2004a). A set of microsatellite DNA markers for the one-lined pencilfish Nannostomus unifasciatus, an Amazonian flooded forest fish. Molecular Ecology Notes, 4, 333–335.

    Article  CAS  Google Scholar 

  • Beheregaray, L. B., Möller, L. M., Schwartz, T. S., Chao, N. L., & Caccone, A. (2004b). Microsatellite markers for the cardinal tetra Paracheirodon axelrodi, a commercially important fish from Central Amazonia. Molecular Ecology Notes, 4, 330–332.

    Google Scholar 

  • Beheregaray, L. B., Chae, J., Chao, N. L., & Caccone, A. (2005). Characterization of microsatellite loci for the Amazonian rummy-nose tetra, Hemigrammus bleheri (Teleostei, Characidae). Molecular Ecology Notes, 5, 536–537.

    Google Scholar 

  • Beheregaray, L. B., Piggott, M., Chao, N. L., & Caccone, A. (2006). Development and characterization of microsatellite markers for the Amazonian blackwing hatchetfish, Carnegiella marthae (Teleostei, Gasteropelecidae). Molecular Ecology Notes, 6, 787–788.Bentsen, H. B., Eknath, A. E., Palada-de-Vera, M. S., Danting, J. C., Bolivar, H. L., Reyes, R. A., Dionisio, E. E., Longalong, F. M., Circa, A. V., Tayamen, M. M., & Gjerde, B. (1998). Genetic improvement of farmed tilapias: Growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticusAquaculture, 160, 145–173.

    Google Scholar 

  • Benites, C., (2008). Caracterização genética do pintado Pseudoplatystoma corruscans, (Spix & Agassiz,1829) (Siluriformes: Pimelodidae) da Bacia Paraná-Paraguai, por marcadores moleculares do tipo microssatélite. Doctoral Thesis, State University of São Paulo (UNESP), CAUNESP, Jaboticabal, São Paulo, Brazil, p 74. Available at: http://hdl.handle.net/11449/100216.

  • Bentsen, H. B., Eknath, A. E., Palada-de-Vera, M. S., Danting, J. C., Bolivar, H. L., Reyes, R. A., Dionisio, E. E., Longalong, F. M., Circa, A. V., Tayamen, M. M., & Gjerde, B. (1998). Genetic improvement of farmed tilapias: Growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticusAquaculture, 160, 145–173.

    Google Scholar 

  • Berdugo, G. O., & Barandica, J. C. B. (2014). Genetic diversity and population structure of bocachico Prochilodus magdalenae (Pisces, Prochilodontidae) in the Magdalena River basin and its tributaries, Colombia. Genetics and Molecular Biology, 37, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma, R., & Volker Loeschcke, V. (2012). Genetic erosion impedes adaptive responses to stressful environments. Evolutionary Applications, 5, 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Billington, N., & Hebert, P. D. N. (1991). Mitochondrial DNA diversity in fishes and its implications for introductions. Canadian Journal of Fisheries and Aquatic Sciences, 48, 80–94.

    Article  Google Scholar 

  • Birnboim, H. C., & Straus, N. A. (1975). DNA from eukaryotic cells contains unusually long pyrimidine sequences. Canadian Journal of Biochemistry, 53, 640–664.

    Article  CAS  PubMed  Google Scholar 

  • Birky, C. W. (1978). Transmission genetics of mitochondria and chroloplasts. Annual Review of Genetics, 12, 471–512.

    Article  PubMed  Google Scholar 

  • Blouin, M. S., Parsons, M., Lacaille, V., & Lotz, S. (1996). Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology, 5, 393–401.

    Article  CAS  PubMed  Google Scholar 

  • Bogenhagen, C. W., & Clayton, D. A. (1974). The number of mitochondrial deoxyribonucleic acid genome in mouse L and human HeLa cells. Journal of Biological Chemistry, 294, 471–512.

    Google Scholar 

  • Bonga, S. E. W. (1997). The stress response in fish. Physiological Reviews, 77, 591–625.

    Google Scholar 

  • Braga-Silva, A., & Galetti, P. M., Jr. (2016). Evidence of isolation by time in freshwater migratory fish Prochilodus Costatus (Characiformes, Prochilodontidae). Hydrobiologia, 765, 159–167.

    Google Scholar 

  • Brewer, G. J. (1970). An introduction to isozyme techniques (p. 186). New York: Academic Press.

    Google Scholar 

  • Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., & Rolf, B. (1998). Mutation rate in human microsatellites: Influence of the structure and length of the tandem repeat. American Journal of Human Genetics, 62, 1408–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britski, H. A., Silimon, K. Z., & Lopes, B. S. (2007). Peixes do Pantanal – Manual de Identificação (2nd ed.). Corumbá: Embrapa Pantanal. 184 p.

    Google Scholar 

  • Brown, W. M., & Vinograd, J. (1974). Restriction endonuclease cleavage maps of animal mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 71, 4617–4621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, W. M., Prager, E. M., Wang, A., & Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution. Journal of Molecular Evolution, 18, 225–239.

    Article  CAS  PubMed  Google Scholar 

  • Brown, W. M. (1985). The mitochondrial genome of animals. In R. J. MacIntyre (Ed.), Molecular evolutionary genetics (pp. 95–130). New York: Plenum Press.

    Chapter  Google Scholar 

  • Burke, T., & Bruford, M. W. (1987). DNA fingerprinting in birds. Nature, 32, 149–152.

    Article  Google Scholar 

  • Buth, D. G., & Burr, B. M. (1978). Lsozyme variability in the cyprinid genus Campostoma. Copeia, 2, 298–311.

    Article  Google Scholar 

  • Butler, J. M. (2005). Forensic DNA typing (2nd ed). London: Elsevier Academic Press. 500 pp.

    Google Scholar 

  • Caballero, A., & Toro, M. A. (2002). Analysis of genetic diversity for the management of conserved subdivided populations. Conservation Genetics, 3, 289–299.

    Article  CAS  Google Scholar 

  • Caetano-Anolles, G., & Bassam, B. J. D. N. A. (1993). Amplification fingerprinting using arbitrary oligonucleotide primers. Applied Biochemistry and Biotechnology, 42, 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Calcagnotto, D., Russello, M., & De Salle, R. (2001). Isolation and characterization of microsatellite loci in Piaractus mesopotamicus and their applicability in other Serrasalminae fish. Molecular Ecology Notes, 1, 245–247.

    Article  CAS  Google Scholar 

  • Calcagnotto, D., & Desalle, R. (2009). Population genetic structuring in pacu (Piaractus mesopotamicus) across the Paraná-Paraguay basin: Evidence from microsatellites. Neotropical Ichthyology, 7, 607–616.

    Article  Google Scholar 

  • Caputo, L. I., Carmo, F. M. S. C., Carvalho, L. C. C., Teixeira, Z. O., & Yazbeck, G. M. (2016). Forty-seven new microsatellite markers for Salminus brasiliensis, a suitable flagship Neotropical migratory fish. Conservation Genetics Resources (Microsatellite Records), 8, 359–370.

    Article  Google Scholar 

  • Carrillo-Avila, M., Resende, E. K., Marques, D. K. S., & Galetti-Jr, P. M. (2009). Isolation and characterization of polymorphic microsatellites in the threatened catfish Jaú, Zungaro jahu (Siluriformes, Pimelodidae). Conservation Genetics, 10, 1597–1599.

    Article  CAS  Google Scholar 

  • Carter, R. E., Mair, G. C., Skibinski, D. O. F., Parkin, D. T., & Beardmore, J. A. (1991). The application of DNA fingerprinting in the analysis of gynogenesis of tilapia. Aquaculture, 95, 41–52.

    Article  Google Scholar 

  • Carvajal-Vallejos, F. M., Duponchelle, F., Ballivian, J. P. T., Hubert, N., Rodríguez, J. N., Berrebi, P., Cornejo, S. S., & Renno, J.-F. (2010). Population genetic structure of Cichla pleiozona (Perciformes: Cichlidae) in the upper Madera basin (Bolivian Amazon): Sex-biased dispersal? Molecular Phylogenetics and Evolution, 57, 1334–1340.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, G. R. & Hauser, L. (1994). Molecular genetics and the stock concept in fisheries. In: Carvalho, G. R. & Pitcher, T. J. Reviews in fish biology and fisheries 4, 326–350.

    Google Scholar 

  • Carvalho, G. R., Shaw, P. W., Magurran, A. E., & Seghers, B. H. (1991). Marked genetic divergence revealed by allozymes among populations of the guppy Poecilia reticulata (Poeciliidae), in Trinidad. Biological Journal of the Linnean Society, 42, 389–405.

    Article  Google Scholar 

  • Carvalho, D. C., Oliveira, D. A. A., Sampaio, I., & Beheregaray, L. B. (2009). Microsatellite markers for the Amazon peacock bass (Cichla piquiti). Molecular Ecology Resources, 9, 239–241.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, D. C., & Beheregaray, L. B. (2011). Rapid development of microsatellites for the endangered Neotropical catfish Conorhynchus conirostrisusing a modest amount of 454 shot-gun pyrosequencing. Conservation Genetics Resources, 3, 373–375.

    Article  Google Scholar 

  • Carvalho, D. C., Oliveira, D. A. A., Beheregaray, L. B., & Torres, R. A. (2012). Hidden genetic diversity and distinct evolutionarily significant units in a commercially important Neotropical apex predator, the catfish Pseudoplatystoma corruscans. Conservation Genetics, 13, 1671–1675.

    Article  Google Scholar 

  • Carvalho-Costa, L. F., Hatanaka, T., & Galetti Jr., P. G. (2006). Isolation and characterization of polymorphic microsatellite markers in the migratory freshwater fish Prochilodus costatus. Molecular Ecology Notes, 6, 818–819.

    Google Scholar 

  • Carvalho-Costa, L. F., Hatanaka, T., & Galetti Jr., P. G. (2008). Evidence of lack of population substructuring in the Brazilian freshwater fish Prochilodus costatus. Genetics and Molecular Biology, 31(suppl 1), 377–380.

    Google Scholar 

  • Castle, W. E. (1903). The laws of Galton and Mendel and some laws governing race improvement by selection. Proceedings of the American of the Academy of Arts and Sciences, 35, 233–242.

    Google Scholar 

  • Chakraborty, S. M., & Leimar, O. (1987). Genetic variation within a subdivided population. In N. Ryman & F. Utter (Eds.), Population genetics and fishery management (pp. 89–120). Seattle: University of Washington Press.

    Google Scholar 

  • Chambers, G. K., & MacAvoy, E. S. (2000). Microsatellites: Consensus and controversy. Comparative Biochemistry and Physiology Part B, 126, 455–476.

    Article  CAS  Google Scholar 

  • Chang, R. Y., O’Donoughue, L. S., & Bureau, T. E. (2001). Inter-MITE polymorphisms (IMP): A high throughput transposon-based genome mapping and fingerprinting approach. Theoretical and Applied Genetics, 102, 773–781.

    Article  CAS  Google Scholar 

  • Chapman, R. W., & Powers, D. A. (1984). A method for the rapid isolation of mitochondrial DNA from fishes. Tech. Rep. UM-SG-TS-84-05. College Park: Maryland Sea Grant Program., Univ. Md. 11 p.

    Google Scholar 

  • Chauhan, T., & Rajiv, K. (2010). Molecular markers and their applications in fisheries and aquaculture. Advances in Biosciences and Biotechnology, 1, 281–291.

    Article  CAS  Google Scholar 

  • Chiari, L., & Sodré, L. M. K. (1999). Genetic variability in five species of Anostomidae (Ostariophysi – Characiformes). Genetics and Molecular Biology, 22, 517–523.

    Google Scholar 

  • Chistiakov, D. A., Hellemans, B., & Volckaert, F. A. M. (2006). Microsatellites and their genomic distribution, evolution, function and applications. A review with specialreference to fish genetics. Aquaculture, 255, 1–29.

    Article  CAS  Google Scholar 

  • Chopelet, J., Waples, R. S., & Mariani, S. (2009). Sex change and the genetic structure of marine fish populations. Fish and Fisheries, 10, 329–343.

    Article  Google Scholar 

  • Coronel, J. S., Maes, G. E., Claus, S., Van Damme, P. A., & Volckaert, F. A. M. (2004). Differential population history in the migratory catfishes Brachyplatystoma flavicans and Pseudoplatystoma fasciatum (Pimelodidae) from the Bolivian Amazon assessed with nuclear and mitochondrial DNA markers. Journal of Fish Biology, 65, 859–868.

    Google Scholar 

  • Cross, T. F., & Payne, R. H. (1978). Geographic variation in Atlantic cod, Gadus morhua, off eastern North America: a biochemical systematics approach. Journal of the Fisheries Research Board of Canada, 35, 117–123.

    Article  Google Scholar 

  • Cushing, J. E. (1952). Serological differentiation of fish bloods. Science, 115, 404–405.

    Article  CAS  PubMed  Google Scholar 

  • Cushing, J. E. (1956). Observations on serology of tuna (Vol. 183, pp. 1–14). Washington, DC: U.S. Fish and Wildlife Service, Special Scientific Report-Fisheries.

    Google Scholar 

  • Danna, K., & Nathans, D. (1971). Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus Influenzae. Proceedings of the National Academy of Sciences of the United States of America, 68, 2913–2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva, C. J. (2000). Ecological basis for the management of the Pantanal- upper Paraguay River basin. In A. J. M. Smits, P. H. Nienhuis, & R. S. E. W. Leuven (Eds.), New approaches to river management (pp. 97–117). Leiden: Blackhuys Publishers.

    Google Scholar 

  • Dantas, H. L., Neto, M. A. S., Oliveira, K. K. C., Severi, W., Diniz, F. M., & Coimbra, M. R. M. (2013). Genetic diversity of captive and wild threatened catfish Pseudoplatystoma corruscans in the São Francisco River. Reviews in Fisheries Science, 21, 237–246.

    Article  Google Scholar 

  • Dergam, J. A., Harumi, I. S., Shibatta, O. A., Duboc, L. F., Júlio-JR, H. F., Giuliano-Caetano, L., & Black IV, W. C. (1998). Molecular biogeography of the Neotropical fish Hoplias malabaricus (Erythrinidae: Characiformes) in the Iguaçu, Tibagi, and Paraná rivers. Genetics and Molecular Biology, 21, 493–496.

    Google Scholar 

  • Desmarais, E., Lanneluc, L., & Lagnel, J. (1998). Direct amplification of length polymorphism (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Research, 26, 1458–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewoody, J. A., & Avise, J. C. (2000). Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology, 56, 461–473.

    Article  CAS  Google Scholar 

  • Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91, 3166–3170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, A., Civitello, A., Hammond, H. A., & Caskey, C. T. (1991). DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics, 49, 746–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eknath, A. E., Tayamen, M. M., Palada-de-Vera, M. P., Danting, J. C., Reyes, R. A., Dionisio, E. E., Capili, J. B., Bolivar, H. L., Abella, T. A., Circa, A. V., Betsen, H. B., Gjerde, B., Gjedrem, T., & Pullin, R. S. V. (1993). Genetic improvement of farmed tilapias: The growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture, 111, 171–188.

    Article  Google Scholar 

  • Eknath, A. E., & Acosta, B. O. (1998). Genetic improvement of farmed tilapias (GIFT) project, final report, march 1988 to December 1997. Manila: International Center for Living Aquatic Resources Management.

    Google Scholar 

  • Eknath, A. E., Bentsen, H. B., Ponzoni, R. W., Rye, M., Nguyen, N. H., Thodesen, J., & Gjerde, B. (2007). Genetic improvement of farmed tilapias:composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture, 273, 1–4.

    Article  CAS  Google Scholar 

  • Eknath, A. E., & Hulata, G. (2009). Use and exchange of genetic resources of Nile tilapia (Orecohromis niloticus). Reviews in Aquaculture, 1, 197–213.

    Article  Google Scholar 

  • Elmer, K. R., Fan, S., Kusche, H., Spreitzer, M. L., Kautt, A. F., Franchini, P., & Meyer, A. (2014). Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nature Communications, 5. doi:10.1038/ncomm6168.

  • Epplen, J. T. (1988). On simple repeated GATA sequences in animal genomes: A critical reappraisal. Journal of Heredity, 79, 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources, 10, 564–567.

    Article  PubMed  Google Scholar 

  • FAO. (2011). Molecular genetic characterization of animal genetic resources. Rome: FAO Animal Production and Health Guidelines. No. 9.

    Google Scholar 

  • Farias, I. P., Hrbek, T., Brinkmann, H., Sampaio, I., & Meyer, A. (2003). Characterization and isolation of DNA microsatellite primers for Arapaima gigas, an economically important but severely over-exploited fish species of the Amazon basin. Molecular Ecology Notes, 3, 128–130.

    Article  CAS  Google Scholar 

  • Farias, I. P., Torrico, J. P., García-Dávila, C., Santos, M. C. F., Hrbek, T., & Renno, J.-F. (2010). Are rapids a barrier for floodplain fishes of the Amazon basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Molecular Phylogenetics and Evolution, 56, 1129–1135.

    Article  PubMed  Google Scholar 

  • Féral, J.-P. (2002). How useful are the genetic markers in attempts to understand and manage marine biodiversity? Journal of Experimental Marine Biology and Ecology, 268, 121–145.

    Article  Google Scholar 

  • Ferguson, A., Taggart, J. B., Prodohl, P. A., McMeel, O., Thompson, C., Stone, C., McGinnity, P., & Hynes, R. A. (1995). The application of molecular markers to the study and conservation of fish populations, with special reference to Salmon. Journal of Fish Biology, 47(Suppl. A), 103–126.

    Article  CAS  Google Scholar 

  • Ferguson, M. M., & Danzmann, R. G. (1998). Role of genetic markers in fisheries and aquaculture: Useful tools or stamp collecting? Canadian Journal of Fisheries and Aquatic Sciences, 55, 1533–1563.

    Article  Google Scholar 

  • Ferreira, D. G., Galindo, B. A., Alves, A. N., Almeida, F. S., Ruas, C. F., & Sofia, S. H. (2013). Development and characterization of 14 microsatellite loci in the Neotropical fish Geophagus brasiliensis (Perciformes, Cichlidae). Journal of Fish Biology, 83, 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, D. G., Galindo, B. A., Frantine-Silva, W., Almeida, F. S., & Sofia, S. H. (2015). Genetic structure of a Neotropical sedentary fish revealed by AFLP, microsatellite and mtDNA markers: A case study. Conservation Genetics, 16, 151–166.

    Article  CAS  Google Scholar 

  • Ferreira, D. G., Souza-Shibatta, L., Shibatta, O. A., Sofia, S. H., Carlsson, J., Dias, J. H. P., Makrakis, S., & Makrakis, M. C. (2017). Genetic structure and diversity of migratory freshwater fish in a fragmented Neotropical river system. Reviews in Fish Biology and Fisheries, 27, 209–231.

    Google Scholar 

  • Ferris, S. D., & Berg, W. J. (1987). The utility of mitochondrial DNA in fish genetics and fishery management. In N. Ryman & F. Utter (Eds.), Population genetics and fishery management (pp. 277–300). Seattle: University of Washington Press.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarenson. 272 pp.

    Book  Google Scholar 

  • Flavell, A. J., Knox, M., Pearce, S. R., & Ellis, T. H. N. (1998). Retrotransposon based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal, 16, 643–665.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, F. S., Vilar, J. A., Leite, A. C., Ojeda, A. P., Caneppele, D., & Hilsdorf, A. W. S. (2016). Development and characterization of microsatellite markers for the critically endangered Neotropical catfish Steindachneridion Parahybae. Conservation Genetics Resources (Microsatellite records), 8, 587–594.

    Article  Google Scholar 

  • Fujino, K. (1970). Skipjack tuna subpopulation identified by genetic characteristics in the western Pacific. In J. C. Marr (Ed.), The Kuroshio: A symposium on the Japan current (pp. 385–393). Honolulu: East-West Center Press.

    Google Scholar 

  • Garcez, R., Calcagnotto, D., & Almeida-Toledo, L. F. (2011). Population structure of the migratory fish Prochilodus lineatus (Characiformes) from rio Grande basin (Brazil), an area fragmented by dams. Aquatic Conservation: Marine and Freshwater Ecosystems, 21, 268–275.

    Article  Google Scholar 

  • Gjedrem, T., & Kolstad, K. (2012). Development of breeding programs for aquatic species should be given high priority. World Aquaculture, 43, 10–13.

    Google Scholar 

  • Gjedrem, T., & Robinson, N. (2014). Advances by selective breeding for aquatic species: A review. Agricultural Sciences, 5, 1152–1158.

    Article  Google Scholar 

  • Giles, R. E., Blanc, H., Cann, H. M., & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 6715–6719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, P. C., Ribeiro, R. P., Lopera-Barrero, N. M., Povh, J. A., Vargas, L., & Sirol, R. N. (2008). Diversidade genética de três estoques de piapara (Leporinus elongatus), utilizando RAPD. Acta Scientiarum Animal Sciences, 30, 241–247.

    Google Scholar 

  • Gomes, P. C., Ribeiro, R. P., Sirol, R. N., Lopera-Barrero, N. M., Moreira, H. L. M., Povh, J. A., Mangolin, C. A., Vargas, L., Jacometo, C. B., & Streit-Jr, D. S. (2011). Diversidade genética de dourado utilizado em programas de repovoamento no rio Paranapanema. Pesquisa Agropecuária Brasileira, 46, 167–173.

    Google Scholar 

  • Gondim, S. G. C. A., Resende, L. V., Brondani, R. P. V., Collevatti, R. G., Silva-Júnior, N. J., Pereira, R. R., & Telles, M. P. C. (2010). Development of microsatellite markers for Hoplias malabaricus (Erythrinidae). Genetics and Molecular Research, 9, 1513–1517.

    Article  CAS  PubMed  Google Scholar 

  • González-Villaseñor, L. I., Burkhoff, A. M., Corces, V., & Powers, D. A. (1986). Characterization of cloned mitochondrial DNA from the teleost Fundulus heteroclitus and its usefulness as an interspecies hybridization probe. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1866–1872.

    Article  Google Scholar 

  • Grant, W. S., & Bowen, B. M. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: Insights from the sardines and anchovies and lessons for conservation. Journal of Heredity, 89, 415–426.

    Article  Google Scholar 

  • Grodzieker, T., Williams, J., Sharp, P., & Sambrook, J. (1974). Physical mapping of temperature sensitive mutations of adenovirus. Cold Spring Harbor Symposia on Quantitative Biology, 39, 439–446.

    Article  Google Scholar 

  • Gulland, J.A. (1969). Manual of methods for fish stock assessment – part 1. Fish population analysis. FAO Manuals in Fisheries Science, No. 4, 154 p.

    Google Scholar 

  • Gyllensten, U. (1985). The genetic structure of fish: Differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species. Journal of Fish Biology, 26, 691–699.

    Article  Google Scholar 

  • Hallerman, E. M., & Beckmann, J. S. (1988). DNA-level polymorphism as a tool in fisheries science. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1075–1087.

    Article  Google Scholar 

  • Hallerman, E. M. (Ed.). (2003). Population genetics: Principles and applications for fisheries scientists. Bethesda: American Fisheries Society. 475 p.

    Google Scholar 

  • Hamada, H., Petrino, M. G., & Kakunaga, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 79, 6465–6469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, M., Pinchus, E., Di Fiore, A., & Fleisher, R. (1999). Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. BioTechniques, 27, 500–507.

    CAS  PubMed  Google Scholar 

  • Hamoy, I. G., Cidade, F. W., Barbosa, M. S., Gonçalves, E. C., & Santos, S. (2011). Isolation and characterization of tri and tetranucleotide microsatellite markers for the tambaqui (Colossoma macropomum, Serrasalmidae, Characiformes). Conservation Genetics Resources, 3, 33–36.

    Google Scholar 

  • Hamoy, I. G., Santos, E. J., & Santos, S. E. (2008). Rapid and inexpensive analysis of genetic variability in Arapaima gigas by PCR multiplex panel of eight microsatellites. Genetics and Molecular Research, 7, 29–32.

    Article  CAS  PubMed  Google Scholar 

  • Hamoy, I. G., & Santos, S. (2012). Multiplex PCR panel of microsatellite markers for the tambaqui, Colossoma macropomum, developed as a tool for use in conservation and broodstock management. Genetics and Molecular Research, 11, 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28, 49–50.

    Article  CAS  PubMed  Google Scholar 

  • Harris, H. (1966). Enzyme polymorphism in man. Proceedings of the Royal Society B: Biological Sciences, 164, 298–310.

    Article  CAS  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sunderland: Sinauer Associates. 542 pp.

    Google Scholar 

  • Hatanaka, T., Henrique-Silva, F., & Galetti, P. M., Jr. (2002). A polymorphic, telomeric-like sequence microsatellite in the Neotropical fish Prochilodus. Cytogenetic and Genome Research, 98, 308–310.

    Google Scholar 

  • Hatanaka, T., & Galetti, P. M., Jr. (2003). RAPD markers indicate the occurrence of structured populations in a migratory freshwater fish species. Genetics and Molecular Biology, 26, 19–25.

    Google Scholar 

  • Hatanaka, T., Henrique-Silva, F., & Galetti, P. M., Jr. (2006). Population substructuring in a migratory freshwater fish Prochilodus argenteus (Characiformes, Prochilodontidae) from the São Francisco River. Genetica, 126, 153–159.

    Google Scholar 

  • Hayashi, J.-I., Tagashira, Y., & Yoshida, M. C. (1985). Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Experimental Cell Research, 160, 387–395.

    Google Scholar 

  • Heath, D. D., Iwama, G. K., & Devlin, R. H. (1993). PCR primed with VNTR core sequences yields species-specific patterns and hypervariable probes. Nucleic Acids Research, 21, 5782–5785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick, P. W. (1999). Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution, 53, 313–318.

    Article  PubMed  Google Scholar 

  • Hedrick, P. W. (2005). A standardized genetic differentiation measure. Evolution, 59, 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  • Helfman, G., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes: Biology, evolution, and ecology (pp. 355–390). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Herbinger, C. M., Doyle, R. W., Pitman, E. R., Paquet, D., Mesa, K. A., Morris, D. B., Wright, J. M., & Cook, D. (1995). DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture, 137, 245–256.

    Article  Google Scholar 

  • Hey, J., & Machado, C. A. (2003). The study of structured populations – new hope for a difficult and divided science. Nature Reviews Genetics, 4, 535–543.

    Google Scholar 

  • Hilsdorf, A. W. S., Espin, A. M. L. A., Krieger, M. H., & Krieger, J. E. (2002). Mitochondrial DNA diversity in wild and captivity population of Brycon opalinus (Cuvier, 1819) (Characiforme, Characidae, Bryconiae), in the Paraíba do Sul Basin, Brazil. Aquaculture, 214, 81–91.

    Article  CAS  Google Scholar 

  • Hoffman, J. I., & Nichols, H. J. (2011). A novel approach for mining polymorphic microsatellite markers In Silico. PloS One, 6, e23283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtsmark, M., Klemetsdal, G., Sonesson, A. K., & Woolliams, J. A. (2008). Establishing a base population for a breeding program in aquaculture, from multiple subpopulations, differentiated by genetic drift: II. Sensitivity to assumptions on the additive genetic relationships of base animals. Aquaculture, 274, 241–246.

    Article  Google Scholar 

  • Hrbek, T., Farias, I. P., Crossa, M., Sampaio, I., Porto, J. I. R., & Meyer, A. (2005). Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: Implications for its conservation. Animal Conservation, 8, 297–308.

    Article  Google Scholar 

  • Hu, J., & Vick, B. A. (2003). Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 21, 289–294.

    Article  CAS  Google Scholar 

  • Hubby, J. L., & Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 54, 203–215.

    Google Scholar 

  • Huergo, G. M., Filgueiras-Souza, R. J., Batista, J. S., Formiga-Aquino, K., & Alves-Gomes, J. A. (2011). Molecular genetics as a tool for fisheries management in the Brazilian Amazon: Piraíba (Brachyplatystoma filamentosum and Brachyplatystoma capapretum) (Siluriformes: Pimelodidae) in white-water rivers. Pan-American Journal of Aquatic Sciences, 6, 280–289.

    Google Scholar 

  • Hughes, J. B., Daily, G. C., & Ehrlich, P. R. (1997). Population diversity: Its extent and extinction. Science, 278, 689–692.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, R., & Markert, C. (1957). Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science, 125, 1294–1295.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Alarcón, J. C., Mancera-Rodríguez, N. J., & Saldamando-Benjumea, C. I. (2011). Variabilidad genética de Brycon henni (Characiformes: Characidae) en la cuenca media de los ríos Nare y Guatapé, sistema Río Magdalena, Colombia. Revista de Biología Tropical, 59, 269–282.

    PubMed  Google Scholar 

  • Iervolino, F., Resende, E. K., & Hilsdorf, A. W. S. (2010). The lack of genetic differentiation of pacu (Piaractus mesopotamicus) populations in the upper-Paraguay Basin revealed by the mitochondrial DNA D-loop region: Implications for fishery management. Fisheries Research, 101, 27–31.

    Article  Google Scholar 

  • Iwama, G. K., McGeer, J. C., & Bernier, N. J. (1992). The effects of stock and rearing history on the stress response in juvenile coho salmon (Oncorhynchus kisutch). ICES Journal of Marine Science Symposium, 194, 67–83.

    Google Scholar 

  • Jacometo, C. B., Lopera-Barrero, N. M., Rodriguez-Rodriguez, M. D. P., Gomes, P. C., Povh, J. A., Streit- Jr., D. P., Vargas, L., Resende, E. K., & Ribeiro, R. P. (2010). Variabilidade genética em tambaquis (Teleostei: Characidae) de diferentes regiões do Brasil. Pesquisa Agropecuária Brasileira, 45, 481–487.

    Article  Google Scholar 

  • Jaramillo, S., & Baena, M. (2000). Material de apoyo a la capacitación en conservación ex-situ de los recursos fitogenéticos. Cali: Instituto Internacional de Recursos Fitogenéticos. 209 p.

    Google Scholar 

  • Jazin, E., Soodyall, H., Jalonen, P., Lindholm, E., Stoneking, M., & Gyllensten, U. (1998). Mitochondrial mutation rate revisited: Hot spots and polymorphism. Nature Genetics, 18, 109–110.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985a). Hypervariable “minisatellite” regions in human DNA. Nature, 314, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985b). Individual-specific “fingerprints” of human DNA. Nature, 316, 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Jones, A. G., & Ardren, W. R. (2003). Methods of parentage analysis in natural populations. Molecular Ecology, 12, 2511–2523.

    Article  CAS  PubMed  Google Scholar 

  • Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015–4026.

    Article  PubMed  Google Scholar 

  • Junk, W. J., & Cunha, C. N. (2005). Pantanal: A large south American wetland at a crossroads. Ecological Engineering, 24, 391–401.

    Article  Google Scholar 

  • Kalendar, R., Grob, T., Regina, M., Suoniemi, A., & Schulman, A. (1999). IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 98, 704–711.

    Article  CAS  Google Scholar 

  • Kang, J.-H., Kim, Y.-K., Park, J.-Y., An, C.-M., Nam, M.-M., Byun, S. G., Lee, B. I., Lee, J. H., & Choi, T.-J. (2011). Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder. Genetics and Molecular Research, 10, 2786–2794.

    Article  CAS  PubMed  Google Scholar 

  • Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225–1241.

    Google Scholar 

  • Kelly, A. C., Mateus-Pinilla, N. E., Douglas, M., Douglas, M., Shelton, P., & Novakofski, J. (2011). Microsatellites behaving badly: Empirical evaluation of genotyping errors and subsequent impacts on population studies. Genetics and Molecular Research, 10, 2534–2553.

    Google Scholar 

  • Kimura, M., & Weiss, W. H. (1964). The stepping stone model of genetic structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher, T. D., Thomas, W. R., Meyer, A., Edwards, S. V., Pääbo, S., Villabanca, F. X., & Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals. Proceedings of the National Academy of Sciences of the United States of America, 86, 6196–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehn, R. K., Perez, J. E., & Merritt, R. B. (1971). Esterase enzyme function and genetical structure of populations of the freshwater fish, Notropis stramineus. American Naturalist, 105, 1–69.

    Article  Google Scholar 

  • Koh, T. L., Khoo, G., Fan, L. Q., & Phang, V. P. E. (1999). Genetic diversity among wild forms and cultivated varieties of discus Symphysodon spp.as revealed by random amplified polymorphic DNA – RAPD fingerprinting. Aquaculture, 173, 485–497.

    Google Scholar 

  • Koskinen, M. T., & Primmer, C. R. (1999). Cross-species amplification of salmonid microsatellites which reveal polymorphism in European and Arctic grayling, Salmonidae: Thymallus spp. Hereditas, 131, 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, N. S., & Gurusubramanian, G. (2011). Random amplified polymorphic DNA (RAPD) markers and its applications. Science Vision, 11, 116–124.

    Article  Google Scholar 

  • Kumari, N., & Thakur, S. K. (2014). Randomly amplified polymorphic DNA: A brief review. American Journal of Animal and Veterinary Sciences, 9, 6–13.

    Article  CAS  Google Scholar 

  • Landínez-García, R. M., & Márquez, E. J. (2016). Development and characterization of 24 polymorphic microsatellite loci for the freshwater fish Ichthyoelephas longirostris (Characiformes: Prochilodontidae). PeerJ, 4, e2419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lansman, R. A., Shade, R. O., Shapira, J. F., & Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. Journal of Molecular Evolution, 17, 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, P. A. (1972). The stock concept and management of Pacific salmon. In W. C. Simon & P. A. Larkin (Eds.), The stock concept in Pacific salmon, H.R. MacMillan Lectures in Fisheries (pp. 11–15). Vancouver: Univ. of British Columbia.

    Google Scholar 

  • Larsen, P. F., Nielsen, E. E., Meier, K., Olsvik, P. A., Hansen, M. M., & Loeschcke, V. (2012). Differences in salinity tolerance and gene expression between two populations of Atlantic cod (Gadus morhua) in response to salinity stress. Biochemical Genetics, 50, 454–466.

    Article  CAS  PubMed  Google Scholar 

  • Leitão, M.A.B. (1998). Estudo comparativo da estrutura genética de populações naturais e artificiais de tambaqui Colossoma macropomum (Cuvier, 1818): sistemas isozímicos. Master of Science Dissertation, Manaus: INPA-FUA, 75 p.

    Google Scholar 

  • Lee-Jenkins, S. S. Y., Densmore, A. M., Godin, J.-G. J., & Smith, M. L. (2011). Polymorphic microsatellite loci optimised for studies on the convict cichlid fish (Amatitlania siquia). Environmental Biology of Fishes, 92, 261–266.

    Article  Google Scholar 

  • Leuzzi, M. S. P., Almeida, F. S., Orsi, M. L., & Sodré, L. M. K. (2004). Analysis by RAPD of the genetic structure of Astyanax altiparanae (Pisces, Characiformes) in reservoirs on the Paranapanema River, Brazil. Genetics and Molecular Biology, 27, 355–362.

    Article  CAS  Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.

    Article  Google Scholar 

  • Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in brassica. Theoretical and Applied Genetics, 103, 455–546.

    Article  CAS  Google Scholar 

  • Lima, M. P., Campos, T., Sousa, A. C. B., Souza, A. P., & Almeida-Val, V. M. F. (2010). Isolation and characterization of microsatellite markers for Cichla monoculus (Agassiz, 1831), an important freshwater fish in the Amazon. Conservation Genetics Resources, 2, 215–218.

    Article  Google Scholar 

  • Limeira, D. M., Renesto, E., & Zawadzki, C. H. (2009). Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae) from the Ivaí River, upper Paraná River basin, Brazil. Genetics and Molecular Biology, 32, 431–435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litt, M., & Luty, J. A. A. (1989). Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44, 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. J. (2007). Aquaculture genome technologies. Ames: Blackwell Publishing. 558 p.

    Google Scholar 

  • Liu, Z. J., & Cordes, J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238, 1–37.

    Article  CAS  Google Scholar 

  • Lopera-Barrero, N. M., Ribeiro, R. P., Sirol, R. N., Povh, J. A., Gomes, P. C., Vargas, L. M., & Mangolin, C. A. (2008). Caracterización genética de lotes de Brycon orbignyanus utilizados en programas de repoblamiento. Revista MVZ Córdoba, 13, 1110–1119.

    Google Scholar 

  • Lopera-Barrero, N. M., Ribeiro, R. P., Povh, J. A., Sirol, R. N., & Mangolin, C. A. (2010). Avaliação genética de populações naturais e de estoques de um programa de repovoamento de pacu (Piaractus mesopotamicus) utilizando marcadores microssatélite. Arquivos Brasileiro de Medicina Veterinária e Zootecnia, 62, 954–963.

    Google Scholar 

  • López, L. (2006). Genetic variability and population structure of dorada (Brycon moorei sinuensis Dahl) in the Sinú River, Córdoba, Colombia. Lakes & Reservoirs: Research and Management, 11, 1–7.

    Article  Google Scholar 

  • Lopes, C. M., Almeida, F. S., Orsi, M. L., Castro, S. G., Sirol, B. R. N., & Sodré, L. M. K. (2007). Fish passage ladders from Canoas complex – Paranapanema River: Evaluation of genetic structure maintenance of Salminus brasiliensis (Teleostei: Characiformes). Neotropical Ichthyology, 5, 131–138.

    Google Scholar 

  • Lowe, W. H., & Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology, 19, 3038–3051.

    Article  PubMed  Google Scholar 

  • Lunt, D. H., Hutchinson, W. F., & Carvalho, G. R. (1999). An efficient method for PCR-based isolation of microsatellite arrays (PIMA). Molecular Ecology, 8, 891–894.

    Article  CAS  Google Scholar 

  • Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3, 91–99.

    Google Scholar 

  • Ma, L., Ji, Y.-J., & Zhang, D.-X. (2015). Statistical measures of genetic differentiation of populations: Rationales, history and current states. Current Zoology, 61, 886–897.

    Google Scholar 

  • Machado, V., Schulz, U., Palma, L. P., & Rodrigues, J. J. S. (2005). Mitochondrial DNA variation and genetic structure of the migratory freshwater fish Dourado Salminus brasiliensis (Characidae). Acta Biologica Leopoldensia, 27, 107–113.

    CAS  Google Scholar 

  • Macrander, J., Willis, S., Gibson, S., Orti, G., & Hrbek, T. (2012). Polymoprhic microsatellite loci for the Amazonian peacock basses, Cichla orinocensis and C. temensis, and cross-species amplification in other Cichla species. Molecular Ecology Resources (Permanent Genetic Resources Note), 12, 972–974.

    Article  Google Scholar 

  • Matoso, D. A., Artoni, R. F., & Galetti., P. M., Jr. (2004). Genetic diversity of the small characid fish Astyanax sp., and its significance for conservation. Hydrobiologia, 527, 223–225.

    Google Scholar 

  • Matsumoto, C. K., & Hilsdorf, A. W. S. (2009). Microsatellite variation and population genetic structure of a Neotropical endangered Bryconinae species Brycon insignis Steindachner, 1877: Implications for its conservation and sustainable management. Neotropical Ichthyology, 7, 395–402.

    Article  Google Scholar 

  • Mangini, M. A., Cochrane, B. J., & Paul, J. H. (1985). A readily accessible method for cloning fish mitochondrial DNA to generate homologous molecular probes. In S. O. Kullander & B. Fernholm (Eds.), Proceedings, V Congress of European ichthyologists (pp. 233–237). Stockholm: Department of Vertebrate Zoology, Swedish Museum of Natural History.

    Google Scholar 

  • Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.

    Article  CAS  PubMed  Google Scholar 

  • Mardis, E. R. (2011). A decade’s perspective on DNA sequencing technology. Nature, 470, 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Marr, J. C. (1957). Contributions to the study of subpopulations of fishes. Washington, DC: U.S. Fish and Wildlife Service. Special scientific report-fisheries, 208, 1–129.

    Google Scholar 

  • Martínez, J. G., Caballero-Gaitán, S. J., Sánchez-Bernal, D., Assunção, E. N., Astolfi-Filho, S., Hrbek, T., & Farias, I. P. (2016). De novo SNP markers development for the Neotropical gilded catfish Brachyplatystoma rousseauxii using next-generation sequencing-based genotyping. Conservation Genetics Resources, 8, 415–418.

    Article  Google Scholar 

  • Martínez, J. G., Machado, V. N., Caballero-Gaitán, S. J., Santos, M. C. F., Alencar, R. M., Maria Doris Escobar, M. D., Hrbek, T., & Farias, I. P. (2017). SNPs markers for the heavily overfished tambaqui Colossoma macropomum, a Neotropical fish, using next-generation sequencing-based de novo genotyping. Conservation Genetics Resources, 9, 29–33.

    Google Scholar 

  • Martins, C., Wasko, A. P., Oliveira, C., & Foresti, F. (2003). Mitochondrial DNA variation in wild populations of Leporinus elongatus from the Paraná River basin. Genetics and Molecular Biology, 26, 33–38.

    Article  CAS  Google Scholar 

  • Mastrochirico-Filho, V. A., Hata, M. E., Sato, L. S., Jorge, P. H., Foresti, F., Rodriguez, M. V., Martínez, P., Porto-Foresti, F., & Hashimoto, D. T. (2010). SNP discovery from liver transcriptome in the fish Piaractus mesopotamicus. Conservation Genetics Resources, 8, 109–114.

    Article  Google Scholar 

  • McHugh, J. L. (1942). Vertebral number of young herring in southern British Columbia. Journal of the Fisheries Research Board of Canada, 5, 474–484.

    Article  Google Scholar 

  • Metzker, M. L. (2005). Emerging technologies in DNA sequencing. Genome Research, 15, 1767–1776.

    Article  CAS  PubMed  Google Scholar 

  • Moeser, A. A., & Bermingham, E. (2005). Isolation and characterization of eight microsatellite loci for the Neotropical freshwater catfish Pimelodella chagresi (Teleostei: Pimelodidae). Molecular Ecology Notes, 5, 363–365.

    Google Scholar 

  • Moller, D. (1968). Genetic diversity in spawning cod along the Norwegian coast. Hereditas, 60, 1–31.

    Google Scholar 

  • Moore, S. S., Sargeant, L. L., King, T. J., Mattick, J. S., Georges, M., & Hetzel, D. J. S. (1991). The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 10, 654–660.

    Google Scholar 

  • Morales, P., & Poulin, I. V. E. (2011). Genetic structure in remnant populations of an endangered cyprinodontid fish, Orestias ascotanensis, endemic to the Ascotán salt pan of the Altiplano. Conservation Genetics, 12, 1639–1643.

    Google Scholar 

  • Morelli, K. A., Oliveira, C., Porto-Foresti, F., Senhorini, J. A., & Foresti, F. (2007a). Population structure of Prochilodus lineatus (Characiformes, Prochilodontidae) in the Mogi-Guaçu river identified by molecular analysis. In P. S. H. Pompeu, H. A. Santos, & C. B. M. Alves (Eds.), Proceedings of the international symposium on fish passages in South America (pp. 7–10). Lavras: UFLA.

    Google Scholar 

  • Morelli, K. A., Revaldaves, E., Oliveira, C., & Foresti, F. (2007b). Isolation and characterization of eight microsatellite loci in Leporinus macrocephalus (Characiformes: Anostomidae) and cross-species amplification. Molecular Ecology Notes, 7, 32–34.

    Google Scholar 

  • Moritz, C., Dowling, T. E., & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269–292.

    Article  Google Scholar 

  • Morin, P. A., Leduc, R. G., Archer, F. I., Martien, K. K., Huebinger, R., Bickham, J. W., & Taylor, B. L. (2009). Significant deviations from hardy–Weinberg equilibrium caused by low levels of microsatellite genotyping errors. Molecular Ecology Resources, 9, 498–504.

    Article  PubMed  Google Scholar 

  • Moysés, C. B., & Almeida-Toledo, L. F. (2002). Restriction fragment length polymorphisms of mitochondrial DNA among five freshwater fish species of the genus Astyanax (Pisces, Characidae). Genetics and Molecular Biology, 25, 401–407.

    Article  Google Scholar 

  • Moysés, C. B., Mockford, S., Almeida-Toledo, L. F., & Wright, J. M. (2005). Nine polymorphic microsatellite loci in the Neotropical electric eel Eigenmannia (Teleostei: Gymnotiformes). Molecular Ecology Notes, 5, 7–9.

    Article  CAS  Google Scholar 

  • Munõz-Rojas, P., Quezada-Romegialli, C., & Véliz, D. (2012). Isolation and characterization of ten microsatellite loci in the catfish Trichomycterus areolatus (Siluriformes: Trichomycteridae), with cross-amplification in seven Trichomycterinae species. Conservation Genetics Resources, 4, 443–445.

    Google Scholar 

  • Nascimento, P. R. M., Santos, C. H. A., Sousa, C. F. S., Clímaco, G. T., Paula-Silva, M. N., & Almeida-Val, V. M. F. (2012). Isolation and development microsatellite markers in the Pygocentrus nattereri (Kner, 1858) (Characiformes, Serrasalminae), an important freshwater fish in the Amazon. Conservation Genetics Resources, 4, 271–274.

    Article  Google Scholar 

  • Nater, A., Krützen, M., & Lindholm, A. K. (2008). Development of polymorphic microsatellite markers for the livebearing fish Poecilia parae. Molecular Ecology Resources, 8, 857–860.

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106, 283–292.

    Article  Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA, 76, 5269–5273. Nei, M., & Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics, 97, 145–163.

    Google Scholar 

  • Noack, K., Wilson, A. B., & Meyer, A. (2000). Broad taxonomic applicability of microsatellites developed for the highly polymorphic neotropical cichlid, Amphilophus citrinellum. Animal Genetics, 31, 151–152.

    Article  CAS  PubMed  Google Scholar 

  • O’Connell, M., & Wright, J. M. (1997). Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries, 7, 331–363.

    Article  Google Scholar 

  • Olivatti, A. M., Boni, A. M., Silva-Júnior, N. J., Resende, L. V., Gouveia, F. O., & Telles, M. P. C. (2011). Heterologous amplification and characterization of microsatellite markers in the Neotropical fish Leporinus friderici. Genetics and Molecular Research, 10, 1403–1408.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, T.I., Hallerman, E.M., Resende, E.K., Hilsdorf, A.W.S. (2017). Genetic characterization of Brycon hilarii (Characiformes) populations within the Pantanal: Aspects of their conservation within a globally important Neotropical wetland. Journal of Ichthyology 57, 434–444.

    Google Scholar 

  • Oliveira, A. V., Prioli, A. J., Prioli, S. M. A. P., Pavanelli, C. S., Júlio-, J. R. H. F., & Panarari, R. S. (2002). Diversity and genetic distance in populations of Steindachnerina in the upper Paraná River floodplain of Brazil. Genetica, 115, 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, K. K. C., Lima, A. P. S., & Coimbra, M. R. M. (2015). Isolation and characterization of the first microsatellite markers in the Neotropical freshwater fish Piau-verdadeiro, Leporinus obtusidens (Valenciennes, 1837). Conservation Genetics Resources, 7, 77–79.

    Article  Google Scholar 

  • O’Reilly, P., & Wright, J. M. (1995). The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. Journal of Fish Biology, 47(Suppl. A), 29–55.

    Article  Google Scholar 

  • Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 86, 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrensky, A., Borghetti, J. R., and Soto, D. (Eds). (2007). Estudo setorial para consolidação de uma aquicultura sustentável no Brasil, Curitiba, 279 p. Available at: ftp://ftp.fao.org/fi/document/aquaculture/sect_study_brazil.pdf.

  • Paiva, S., Renesto, E., & Zawadzki, C. H. (2005). Genetic variability of Hypostomus (Teleostei, Loricariidae) from the Ribeirão Maringá, a stream of the upper Rio Paraná basin, Brazil. Genetics and Molecular Biology, 28, 370–375.

    Article  Google Scholar 

  • Paiva, A. L. B., & Kalapothakis, E. (2008). Isolation and characterization of microsatellite loci in Pimelodus maculatus (Siluriformes: Pimelodidae). Molecular Ecology Resources, 8, 1078–1080.

    Article  CAS  PubMed  Google Scholar 

  • Paiva, S. R., Dergam, J. A., & Machado, F. (2006). Determining management units in southeastern Brazil: The case of Astyanax bimaculatus (Linnaeus, 1758) (Teleostei: Ostariophysi: Characidae). Hydrobiologia, 560, 393–404.

    Article  CAS  Google Scholar 

  • Pamponet, V. C. C., Carneiro, P. L. S., Affonso, P. R. A. M., Miranda, V. S., Silva- Jr., J. C., Oliveira, C. G., & Gaiotto, F. A. A. (2008). A multi-approach analysis of the genetic diversity in populations of Astyanax Aff. bimaculatus Linnaeus, 1758 (Teleostei: Characidae) from northeastern Brazil. Neotropical Ichthyology, 6, 621–630.

    Article  Google Scholar 

  • Panarari-Antunes, R. S., Prioli, A. J., Prioli, S. M. A. P., Galdino, A. S., Julio- Jr., H. F., & Prioli, L. M. (2011). Genetic variability of Brycon orbignyanus (Valenciennes, 1850) (Characiformes: Characidae) in cultivated and natural populations of the upper Paraná River, and implications for the conservation of the species. Brazilian Archives of Biology and Technology, 54, 839–848.

    Article  Google Scholar 

  • Paran, I., & Michelmore, R. W. (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 85, 985–999.

    Article  CAS  PubMed  Google Scholar 

  • Passos, K. B., Leão, A. S. A., Oliveira, D. P., Farias, I. P., & Hrbek, T. (2010). Polymorphic microsatellite markers for the overexploited Amazonian fish, Semaprochilodus insignis (Jardine and Schomburgk 1841). Conservation Genetics Resources, 2, 231–234.

    Article  Google Scholar 

  • Pazza, R., Kavalco, K. F., Prioli, S. M. A. P., Prioli, A. J., & Bertollo, L. A. C. (2007). Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae), part 3: Analysis of the RAPD and ISSR molecular markers. Biochemical Systematics and Ecology, 35, 843–851.

    Article  CAS  Google Scholar 

  • Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., Laroche, A., Scoles, G., Molnar, S. J., & Fedak, G. (1993). Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods and Applications, 2, 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, L. H. G., Foresti, F., & Oliveira, C. (2009). Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecology of Freshwater Fish, 18, 215–225.

    Article  Google Scholar 

  • Pereira, R. P., Santos, C. H. A., Nascimento, P. R. M., Clímaco, G. T., Sousa, A. C. B., Campos, T., Vergueiro- Jr., A. M. K., Paula-Silva, M. N., & Almeida-Val, V. M. F. (2012). Isolation of microsatellite loci in the Amazon sailfin catfish Pterygoplichlhys pardalis (Castelneau, 1855) (Teleostei: Loricariidae). Conservation Genetics Resources, 4, 889–891.

    Article  Google Scholar 

  • Peres, M. D., Renesto, E., Lapenta, A. S., & Zawadzki, C. H. (2002). Genetic variability in Hoplias malabaricus (Osteichthyes, Erytrinidae) in fluvial and lacustrine environments in the upper Paraná River floodplain (Paraná state, Brazil). Biochemical Genetics, 40, 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Peres, M. D., Vasconcelos, M. S., & Renesto, E. (2005). Genetic variability in Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae) from the upper Paraná River basin, Brazil. Genetics and Molecular Biology, 28, 717–724.

    Google Scholar 

  • Pereyra, S., & García, G. (2008). Patterns of genetic differentiation in the Gymnogeophagus Gymnogenys species complex, a Neotropical cichlid from south American basins. Environmental Biology of Fishes, 83, 245–257.

    Article  Google Scholar 

  • Picard, D. J., & Schulte, P. M. (2004). Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. Comparative Biochemistry and Physiology Part A, 137, 205–216.

    Article  CAS  Google Scholar 

  • Pigliucci, M. (1996). How organisms respond to environmental changes: From phenotypes to molecules (and vice versa). Trends in Evolution and Ecology, 11, 168–173.

    Article  Google Scholar 

  • Pineda-Santis, H., Pareja, M. D., Oliveira, M. A., & Builes, J. G. (2004a). Contribución a la relación taxonómica entre cuatro especies de peces de la familia Characidae mediante el polimorfismo de ADN amplificado al azar (RAPD). Revista Colombiana de Ciencias Pecuarias, 17, 30–37.

    Google Scholar 

  • Pineda-Santis, H., Pareja, M. D., Builes, J. G., & Oliveira, M. A. (2004b). Análisis de la variación genética en Piaractus brachypomus (Pisces, Characidae) en estaciones piscícolas colombianas mediante RAPD. Revista Colombiana de Ciencias Pecuarias, 17, 17–23.

    Google Scholar 

  • Pineda-Santis, H., Olivera, M. A., Urcuqui, S. I., Trujillo, E. B., & Builes, J. G. (2006). Evaluación del polimorfismo por microssatélites en individuos de Piaractus brachypomus (Characidae, Serrasalminae) provenientes del río Meta, Colombia. Revista Colombiana de Ciencias Pecuarias, 19, 66–69.

    Google Scholar 

  • Pfenninger, M., Patel, S., Le Arias-Rodriguez, L., Feldmeyer, B., Riesch, R., & Plath, M. (2015). Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana). Molecular Ecology, 24, 5446–5459.

    Article  PubMed  Google Scholar 

  • Pottinger, T. G., & Carrick, T. R. (1999). Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. General and Comparative Endocrinology, 116, 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Povh, J. A., Ribeiro, R. P., SiroL, R. N., Streit- Jr., D. P., Lopera-Barrero, N. M., Vargas, L., Gomes, P. C., & Lopes, T. S. (2008). Diversidade genética de pacu do Rio Paranapanema e do estoque de um programa de repovoamento. Pesquisa Agropecuária Brasileira, 43, 201–206.

    Article  Google Scholar 

  • Povh, J. A., Ribeiro, R. P., Lopera-Barrero, N. M., Gomes, P. C., Blanck, D. V., Vargas, L., Jacometo, C. B., & Lopes, T. S. (2009). Monitoramento da variabilidade genética de pacu, Piaractus mesopotamicus, do programa de aumento de estoque do rio Paranapanema. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61, 1191–1195.

    Article  Google Scholar 

  • Prado, F. D., Pardo, B. G., Guerra-Varela, J., Senhorini, J. A., Martınez, P., Foresti, F., & Porto-Foresti, F. (2014). Development and characterization of 16 microsatellites for the Neotropical catfish Pseudoplatystoma reticulatum and cross species analysis. Conservation Genetics Resources, 6, 679–681.

    Article  Google Scholar 

  • Primmer, C. R. (2011). Genetics of local adaptation in salmonid fishes. Heredity, 106, 401–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prioli, S. M. A. P., Prioli, A. J., Julio-JR, H. F., Pavanelli, C. S., Oliveira, A. V., Carrer, H., Carraro, D. M., & Prioli, L. M. (2002). Identification of Astyanax altiparanae (Teleostei, Characidae) in the Iguaçu River, Brazil, based on mitochondrial DNA and RAPD markers. Genetics and Molecular Biology, 25, 421–430.

    Article  CAS  Google Scholar 

  • Quéroui, S., Vera-Diaz, A., Garcia-Dávila, C., Römer, U., & Renno, J.-F. (2015). Development and characterization of polymorphic microsatellite markers in neotropical fish of the genus Apistogramma (Perciformes: Labroidei: Cichlidae). Journal of Applied Ichthyology, 31(Suppl. 4), 52–56.

    Article  CAS  Google Scholar 

  • Ramella, M. S., Kroth, M. A., Meurer, S., Nuñer, A. P. O., Filho, E. Z., & Arisi, A. C. M. (2006). Genetic variability in four fish species (Pimelodus maculatus, Prochilodus lineatus, Salminus brasiliensis and Steindachneridion scripta) from Uruguay River basin. Brazilian Archives of Biology and Technology, 49, 589–598.

    Article  CAS  Google Scholar 

  • Ramos, J. V. B., Sodré, L. M. K., Orsi, M. L., & Almeida, F. S. (2012). Genetic diversity of the species Leporinus elongatus (Teleostei: Characiformes) in the Canoas complex – Paranapanema River. Neotropical Ichthyology, 10, 821–828.

    Google Scholar 

  • Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230–237.

    Article  Google Scholar 

  • Renesto, E., Zawadzki, C. H., & Revaldaves, E. (2000). Genetic evidence for two species of the genus Pimelodus Lacépède, 1803 (Siluriformes, Pimelodidae) in the Iguaçu River (Brazil). Genetics and Molecular Biology, 23, 809–813.

    Article  CAS  Google Scholar 

  • Renno, J.-F., Berrebi, P., Boujard, T., & Guyomard, R. (1990). Intraspecific genetic differentiation of Leporinus friderici (Anostomidae, Pisces) in French Guiana and Brazil: A genetic approach to the refuge theory. Journal of Fish Biology, 36, 83–95.

    Article  Google Scholar 

  • Reusing, A. F., Renesto, E., Roxo, F. F., & Zawadzki, C. H. (2011). Allozyme differentiation of two populations of the genus Neoplecostomus Eigenmann & Eigenmann, 1888 (Teleostei, Loricariidae) from the upper Paraná River basin, Brazil. Genetics and Molecular Biology, 34, 496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revaldaves, E., Renesto, E., & Machado, M. F. P. S. (1997). Genetic variability of Prochilodus lineatus (Characiformes, Prochilodontidae) in the upper Paraná rivers. Brazilian Journal of Genetics, 20, 381–388.

    Article  Google Scholar 

  • Revaldaves, E., Pereira, L. H. G., Foresti, F., & Oliveira, C. (2005). Isolation and characterization of microsatellite loci in Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) and cross-species amplification. Molecular Ecology Notes, 5, 463–465.

    Article  CAS  Google Scholar 

  • Rezende, J. R., Renesto, E., & Zawadzki, C. H. (2009). Genetic variability in three species of Gymnotus Linnaeus, 1758 (Gymnotiformes: Gymnotidae) from Caracu stream of the upper Paraná River basin, Brazil. Neotropical Ichthyology, 7, 623–628.

    Article  Google Scholar 

  • Ribolli, J., Melo, C. M. R., & Zaniboni-Filho, E. (2012). Genetic characterization of the Neotropical catfish Pimelodus maculatus (Pimelodidae, Siluriformes) in the upper Uruguay River. Genetics and Molecular Biology, 35, 761–769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribolli, J., Minõ, C. I., Zaniboni-Filho, E., Guerreiro, T. C., Reynalte-Tataje, D. A., Freitas, P. D., & Galetti-Jr, P. M. (2016). Preliminary insights into the genetic mating system of Neotropical Salminus brasiliensis: Kinship assignment and parental reconstruction reveal polygynandry. Ichthyological Research, 63, 187–191.

    Google Scholar 

  • Richardson, J. L., Urban, M. C., Bolnick, D. I., & Skelly, D. K. (2014). Microgeographic adaptation and the spatial scale of evolution. Trends in Ecology & Evolution, 29, 165–174.

    Article  Google Scholar 

  • Ridgway, G. J., Cushing, J. E., & Durall, G. L. (1958). Serological differentiation of populations of sockeye salmon, Oncorhynchus nerka, Special Scientific Report Fisheries 257 (pp. 1–9). Washington, D.C: U.S. Fish and Wildlife Service.

    Google Scholar 

  • Robinson, S. P., Simmons, L. W., & Kennington, W. J. (2013). Estimating relatedness and inbostreing using molecular markers and pedigrees: The effect of demographic history. Molecular Ecology, 22, 5779–5792.

    Google Scholar 

  • Rodrigues, F. C., Farias, I. P., Batista, J. S., & Alves-Gomes, J. (2009). Isolation and characterization of microsatellites loci for “piramutaba” (Brachyplatystoma vaillantii, Siluriformes: Pimelodidae), one of the commercially most important migratory catfishes in the Amazon Basin. Conservation Genetics Resources, 1, 365–368.

    Article  Google Scholar 

  • Rodrigues, M. D. N., Moreira, C. G. A., Gutierrez, H. J. P., Almeida, D. B., Streit Jr., D.P., & Moreira, H. L. M. (2015). Development of microsatellite markers for use in breeding catfish, Rhamdia sp. African Journal of Biotechnology, 14, 400–411.

    Google Scholar 

  • Royce, W. F. (1957). Statistical comparison of morphological data. In J. C. Marr (Ed.), Contributions to the study of subpopulations of fishes (Vol. 208, pp. 7–28). Washington, D.C: U.S. Fish and Wildlife Service, Special Scientific Report-Fisheries.

    Google Scholar 

  • Rueda, E. C., Sommer, J., Scarabotti, P., Markariani, R., & Ortí, G. (2011a). Isolation and characterization of polymorphic microsatellite loci in the migratory freshwater fish Prochilodus lineatus (Characiformes: Prochilodontidae). Conservation Genetics Resources, 3, 681–684.

    Article  Google Scholar 

  • Rueda, E. C., Amavet, P., Brancolini, F., Sommer, J., & Ortí, G. (2011b). Isolation and characterization of eight polymorphic microsatellite markers for the migratory Characiform fish, Salminus brasiliensis. Journal of Fish Biology, 79, 1370–1375.

    Article  CAS  PubMed  Google Scholar 

  • Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., Hunt, S. E., Cole, C. G., Coggill, P. C., Rice, C. M., Ning, Z., Rogers, J., Bentley, D. R., Kwok, P. Y., Mardis, E. R., Yeh, R. T., Schultz, B., Cook, L., Davenport, R., Dante, M., Fulton, L., Hillier, L., Waterston, R. H., McPherson, J. D., Gilman, B., Schaffner, S., Van Etten, W. J., Reich, D., Higgins, J., Daly, M. J., Blumenstiel, B., Baldwin, J., Stange-Thomann, N., Zody, M. C., Linton, L., Lander, E. S., & Altshuler, D. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.

    Article  CAS  PubMed  Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stroffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzyme amplification of DNA with thermostable DNA polymerase. Science, 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Sanches, A., & Galetti, P. M., Jr., (2006). Microsatellites loci isolated in the freshwater fish Brycon hilarii. Molecular Ecology Notes, 6, 1045–1046.

    Google Scholar 

  • Sanches, A., & Galetti, P. M., Jr., (2007). Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850). Brazilian Journal of Biology, 67(Suppl.4), 889–895.

    Google Scholar 

  • Sanches, A., Galetti, P. M., Jr., Galzerani, F., Derazo, J., Cutilak-Bianchi, B., & Hatanaka, T. (2012). Genetic population structure of two migratory freshwater fish species (Brycon orthotaenia and Prochilodus argenteus) from the São Francisco River in Brazil and its significance for conservation. Latin American Journal of Aquatic Research, 40, 177–186.

    Google Scholar 

  • Sanches, A., & Galetti, P. M., Jr. (2012). Population genetic structure revealed by a school of the freshwater migratory fish, Brycon hilarii. Latin American Journal of Aquatic Research, 40, 408–417.

    Google Scholar 

  • Santana, Q. C., Coetzee, M. P. A., Steenkamp, E. T., Mlonyeni, O. X., Hammond, G. N. A., Wingfield, M. J., & Wingfield, B. D. (2009). Microsatellite discovery by deep sequencing of enriched genomic libraries. BioTechniques, 46, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Santos, C. H. A., Leitão, M. A. B., Sousa, C. F. S., Santana, G. X., Paula-Silva, M. N., & Almeida-Val, V. M. F. (2012a). Genetic variability of wild and captivity populations of Colossoma macropomum (Cuvier, 1818). Acta Scientiarum-Biological Sciences, 34, 191–197.

    Google Scholar 

  • Santos, C. H. A., Sousa, C. F. S., Paula-Silva, M. N., Val, A. L., & Almeida-Val, V. M. F. (2012b). Genetic diversity in Cichla monoculus (Spix and Agassiz, 1931) populations: Implications for management and conservation. American Journal of Environmental Sciences, 8, 35–41.

    Article  Google Scholar 

  • Santos, M. C. F., Ruffino, M. L., & Farias, I. P. (2007). High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River. Journal of Fish Biology, 71(suppl A), 33–44.

    Google Scholar 

  • Santos, M. C. F., Hrbek, T., & Farias, I. P. (2009). Microsatellite markers for the tambaqui (Colossoma macropomum, Serrasalmidae, Characiformes), an economically important keystone species of the Amazon River floodplain. Molecular Ecology Resources, 9, 874–876.

    Article  CAS  PubMed  Google Scholar 

  • Santos, C. H. A., Santana, G. X., Leitão, C. S. S., Paula-Silva, M. N., & Almeida-Val, V. M. F. (2016). Loss of genetic diversity in farmed populations of Colossoma macropomum estimated by microsatellites. Animal Genetics, 47, 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Santos, C. H. A., Leitão, C. S. S., Silva, M. N. P., & Almeida-Val, V. M. F. (2014). Genetic relationships between captive and wild subpopulations of Arapaima gigas (Schinz, in Cuvier, 1822). International Journal of Fisheries and Aquaculture, 6, 108–123.

    Article  Google Scholar 

  • Sato, Y., Godinho, H. P., Torquato, V. C., & Barbosa, N. D. C. (2006). Ictiofauna no Rio São Francisco. In F. Ávila (Ed.), Guia ilustrado de peixes do Rio São Francisco de Minas Gerais (pp. 69–116). São Paulo: Empresa das Artes.

    Google Scholar 

  • Saulo-Machado, A. C., Formiga, K. M., Ortiz, M. F., Sousa, A. C. B., Alves-Gomes, J. A., & Batista, J. S. (2011). Polymorphic microsatellite DNA markers for the Amazonian catfish Pseudoplatystoma punctifer (Siluriformes: Pimelodidae). Conservation Genetics Resources, 3, 307–310.

    Article  Google Scholar 

  • Schlötterer, C. (2004). The evolution of molecular markers – just a matter of fashion? Nature Reviews, 5, 63–69.

    Google Scholar 

  • Schneider, C. H., Gross, M. C., Terencio, M. L., & Porto, J. I. R. (2012). Cryptic diversity in the mtDNA of the ornamental fish Carnegiella strigata. Journal of Fish Biology, 81, 1210–1224.

    Article  CAS  PubMed  Google Scholar 

  • Schug, M. D., Downhower, J. F., Brown, L. P., Sears, D. B., & Fuerst, P. A. (1998). Isolation and genetic diversity of Gambusia hubbsi (mosquitofish) populations in blueholes on Andors Island, Bahamas. Heredity, 80, 336–346.

    Google Scholar 

  • Schwager, S. J., Mutschler, M. A., Federer, W. T., & Scully, B. T. (1993). The effect of linkage on sample size determination for multiple trait selection. Theoretical and Applied Genetics, 86, 964–974.

    Article  CAS  PubMed  Google Scholar 

  • Seeb, J. E., Carvalho, G., Hauser, L., Naish, K., Roberts, S., & Seeb, L. (2011). Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Molecular Ecology Resources, 11(Suppl. 1), 1–8.

    Article  PubMed  Google Scholar 

  • Sekine, E. S., Prioli, A. J., Prioli, S. M. A. P., & Júlio-Jr, H. F. (2002). Genetic differentiation among populations of Pseudoplatystoma corruscans (Agassiz, 1829) (Osteichthyes, Pimelodidae) isolated by the Guaíra falls in the Paraná River. Acta Scientiarum, 24, 507–512.

    CAS  Google Scholar 

  • Shaw, C. R., & Prasad, R. (1970). Starch gel electrophoresis of enzymes – a compilation of recipes. Biochemical Genetics, 4, 297–320.

    Google Scholar 

  • Shen, X., Yang, G., & Liao, M. (2007). Development of 51 genomic microsatellite DNA markers of guppy (Poecilia reticulata) and their application in closely related species. Molecular Ecology Notes, 7, 302–306.

    Article  CAS  Google Scholar 

  • Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.

    Google Scholar 

  • Silva, J. V., & Hilsdorf, A. W. S. (2011). Isolation and characterization of polymorphic microsatellite loci from Salminus hilarii (Characiformes: Characidae). Conservation Genetics Resources, 3, 437–439.

    Article  Google Scholar 

  • Silva, J. V., Hallerman, E. M., Orfão, L. H., & Hilsdorf, A. W. S. (2015). Genetic structuring of Salminus hilarii Valenciennes, 1850 (Teleostei: Characiformes) in the Rio Paraná basin as revealed by microsatellite and mitochondrial DNA markers. Neotropical Ichthyology, 13, 547–556.

    Article  Google Scholar 

  • Slatkin, M. (1977). Gene flow and genetic drift in a species subject to frequent local extinction. Theoretical Population Biology, 12, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Smith, H. O., & Wilcox, K. W. (1970). A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. Journal of Molecular Biology, 51, 379–391.

    Google Scholar 

  • Smith, P. J., Jamieson, A., & Birley, A. J. (1990). Electrophoretic studies and stock concept in marine Teleosts. Journal du Conseil Permanent International Pour L Exploration de la Mer, 47, 231–245.

    Article  Google Scholar 

  • Smithies, O. (1955). Zone electrophoresis in starch gels: Group variations in the serum proteins of normal adults. Biochemical Journal, 61, 629–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofia, S. H., Silva, C. R. M., Galindo, B. A., Almeida, F. S., Leda, M. K., Sodré, L. M. K., & Martinez, C. B. R. (2006). Population genetic structure of Astyanax scabripinnis (Teleostei, Characidae) from an urban stream. Hydrobiologia, 553, 245–254.

    Article  CAS  Google Scholar 

  • Sofia, S. H., Galindo, B. A., Paula, F. M., Sodré, L. M. K., & Martinez, C. B. R. (2008). Genetic diversity of Hypostomus ancistroides (Teleostei, Loricariidae) from an urban stream. Genetics and Molecular Biology, 31(suppl 1), 317–323.

    Article  CAS  Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, C. F. S., Santos, C. H. A., Sousa, A. C. B., Paula-Silva, M. N., Souza, A. P., Farias, I. P., Ferreira-Nozawa, M. S., & Almeida-Val, V. M. F. (2009). Development and characterization of microsatellite markers in Astronotus crassipinis (Heckel, 1840). Conservation Genetics Resources, 1, 277–280.

    Article  Google Scholar 

  • Souza, C. A., Hashimoto, D. T., Pereira, L. H. G., Oliveira, C., Foresti, F., & Porto-Foresti, F. (2012). Development and characterization of microsatellite loci in Phractocephalus hemioliopterus (Siluriformes: Pimelodidae) and their cross-species amplification in six related species. Conservation Genetics Resources, 4, 499–501.

    Google Scholar 

  • Strecker, U. (2003). Polymorphic microsatellites isolated from the cave fish Astyanax fasciatus. Molecular Ecology Notes, 3, 150–151.

    Article  CAS  Google Scholar 

  • Strecker, U., Bernatchez, L., & Wilkens, H. (2003). Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Molecular Ecology, 12, 699–710.

    Google Scholar 

  • Strecker, U., Hausdorf, B., & Wilkens, H. (2012). Parallel speciation in Astyanax cave fish (Teleostei) in northern Mexico. Molecular Phylogenetics and Evolution, 62, 62–70.

    Google Scholar 

  • Suk, H. Y., & Neff, B. D. (2009). Microsatellite genetic differentiation among populations of the Trinidadian guppy. Heredity, 102, 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A. (1962). Serological studies of the races of tuna VI. Bigeye-3 antigens occurred in the albacore. Report of Nankai Regional Fisheries Research Laboratory, 16, 67–70.

    Google Scholar 

  • Taggart, J. B., Verspoor, E., Galvin, P., Moran, P., & Ferguson, A. (1995). A minisatellite DNA marker for discriminating between European and north American Atlantic salmon (Salmo salar L.) Canadian Journal of Fisheries and Aquatic Sciences, 52, 2305–2311.

    Article  CAS  Google Scholar 

  • Tatarenkov, A., Healey, C. I. M., & Avise, J. C. (2010). Microgeographic population structure of green swordail fish: Genetic differentiation despite abundant migration. Molecular Ecology, 19, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12, 4127–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17, 6463–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz, D. (1993). Notes on definition and nomenclature of tandemly repetitive DNA sequences. In D. J. Pena, R. Chakraborty, J. T. Epplen, & A. J. Jeffreys (Eds.), DNA fingerprinting: State of the science (pp. 21–28). Basel: Birkhauser Verlag.

    Chapter  Google Scholar 

  • Taylor, E. B. (1991). A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture, 98, 185–207.

    Article  Google Scholar 

  • Taylor, E. B. (1995). Genetic variation at minisatellite DNA loci among North Pacific populations of steelhead and rainbow trout (Oncorhynchus mykiss). Heredity, 86, 354–363.

    Article  CAS  Google Scholar 

  • Telles, M. P. C., Resende, L. V., Brondani, R. P. V., Collevatti, R. G., Costa, M. C., & Silva-Júnior, N. J. (2011). Isolation and characterization of microsatellite markers in the armored catfish Hypostomus gymnorhynchus (Loricariidae). Genetics and Molecular Research, 9, 1770–1774.

    Article  CAS  Google Scholar 

  • Telles, M. P. C., Collevatti, R. G., Braga, R. S., Guedes, L. B. S., Castro, T. G., Costa, M. C., Silva-Júnior, N. J., Barthem, R. B., & Diniz-Filho, J. A. F. (2014). Geographical genetics of Pseudoplatystoma punctifer (Castelnau, 1855) (Siluriformes, Pimelodidae) in the Amazon Basin. Genetics and Molecular Research, 13, 3656–3666.

    Article  CAS  PubMed  Google Scholar 

  • Terencio, M. L., Schneider, C. H., & Porto, J. I. R. (2012). Molecular signature of the D-loop in the brown pencilfish Nannostomus eques (Characiformes, Lebiasinidae) reveals at least two evolutionary units in the Rio Negro basin, Brazil. Journal of Fish Biology, 81, 110–124.

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann, R., Moll, K., Paulus, K. B., & Schlupp, I. (2005). New microsatellite loci confirm hybrid origin, parthenogenetic inheritance, and mitotic gene conversion in the gynogenetic Amazon molly (Poecilia formosa). Molecular Ecology Notes, 5, 586–589.

    Article  CAS  Google Scholar 

  • Tiselius, A. W. K. (1937). A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society, 33, 524–531.

    Article  CAS  Google Scholar 

  • Torres, R. A., Motta, T. S., Nardino, D., Adam, M. L., & Ribeiro, J. (2008). Chromosomes, RAPDs and evolutionary trends of the Neotropical fish Mimagoniates microlepis (Teleostei: Characidae: Glandulocaudinae) from coastal and continental regions of the Atlantic forest, Southern Brazil. Acta Zoologica, 89, 253–259.

    Article  Google Scholar 

  • Torres, R. A., & Ribeiro, J. (2009). The remarkable species complex Mimagoniates microlepis (Characiformes: Glandulocaudinae) from the Southern Atlantic rain forest (Brazil) as revealed by molecular systematic and population genetic analyses. Hydrobiologia, 617, 157–170.

    Google Scholar 

  • Turner, B. J., Duvernell, D. D., Bunt, T. M., & Barton, M. G. (2008). Reproductive isolation among endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: Microsatellite evidence. Biological Journal of the Linnean Society, 95, 566–582.

    Google Scholar 

  • Utter, F. M., Ames, W. E., & Hodgkins, H. O. (1970). Transferrin polymorphism in coho salmon (Oncorhynchus kisutch). Journal of the Fisheries Research Board of Canada, 27, 2371–2373.

    Google Scholar 

  • Utter, F. M., Hodgins, H. O., & Allendorf, F. W. (1974). Biochemical genetic studies of fishes: Potentialities and limitations. In D. C. Malins & J. R. Sargent (Eds.), Biochemical and biophysical perspectives in marine biology (Vol. I, pp. 213–238). New York: Academic Press.

    Google Scholar 

  • Utter, F. M. (1991). Biochemical genetics and fishery management: an historical perspective. Journal of Fish Biology, 30, 1–20.

    Article  Google Scholar 

  • Vaini, J. O., Crispim, B. A., Silva, D. B. S., Benites, C., Russo, M. R., & Grisolia, A. B. (2016). Genetic variability of pure Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum individuals in the Paraná and Paraguay River basins. Fisheries Science, 82, 605–611.

    Article  CAS  Google Scholar 

  • Van de Casteele, T., Galbusera, P., & Matthysen, E. (2001). A comparison of microsatellite-based pairwise relatedness estimators. Molecular Ecology, 10, 1539–1549.

    Article  PubMed  Google Scholar 

  • Vandeputte, M., & Prunet, P. (2002). Génétique et adaptation chez les poissons: domestication, résistance au stress et adaptation aux conditions de milieu. INRA Productions Animales, 15, 365–371.

    Google Scholar 

  • Val, A. L., Marcon, J. L., Costa, O. T. F., Barcellos, J. F. M., Maco-Garcia, J. T., & Almeida-Val, V. M. F. (1998). Fishes of the Amazon: Surviving environmental changes. In D. N. Saksena (Ed.), Ichthyology – recent research advances (pp. 389–402). Enfield: Science Publishers.

    Google Scholar 

  • Val, A. L., & Almeida-Val, V. M. F. (1999). Volume overview: Biology of tropical fish. In A. L. Val & V. M. F. Almeida-Val (Eds.), Biology of tropical fishes (pp. 1–4). Manaus: INPA.

    Google Scholar 

  • Väli, U., Einarsson, A., Waits, L., & Ellegren, H. (2008). To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Molecular Ecology, 17, 3808–3817.

    Article  PubMed  Google Scholar 

  • Viana, P. M. F., Carmo, F. M. S., Carvalho, L. C. C., Teixeira, Z. O., Lívia Izabela Caputo, L. I., & Yazbeck, G. M. (2016). First set of polymorphic microsatellite markers for Brycon orbignyanus, an endangered Neotropical Piracema fish species. Conservation Genetics Resources (Microsatellite Records), 8, 43–81.

    Article  Google Scholar 

  • Villanova, G. V., Vera, M., Díaz, J., Martinez, P., Calcaterra, N. B., & Arranz, S. E. (2015). Isolation and characterization of 20 polymorphic microsatellite loci in the migratory freshwater fish Leporinus obtusidens (Characiformes: Anostomidae) using 454 shotgun pyrosequencing. Journal of Fish Biology, 86, 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu, V., Christman, J., Calle, P., & Aguirre, W. E. (2013). Isolation of microsatellite loci for the predatory fish Hoplias microlepis (Characiformes: Erythrinidae) from a highly impacted river system in western Ecuador. Conservation Genetics Resources, 5, 437–439.

    Article  Google Scholar 

  • Xiao-Gu, Z., Jin-Gou, T., & Bang-XI, X. (2006). Applications of microsatellite markers in studies of genetics and breeding of fish. Chinese Journal of Agricultural Biotechnology, 3, 83–87.

    Article  CAS  Google Scholar 

  • Wade, M. J., & McCauley, D. E. (1988). Extinction and recolonization: Their effects on the genetic differentiation of local populations. Evolution, 42, 995–1005.

    Article  PubMed  Google Scholar 

  • Walter, R. P., Blum, M. J., Snider, S. B., Paterson, I. G., Bentzen, P., Lamphere, B. A., & Gilliam, J. F. (2011). Isolation and differentiation of Rivulus hartii across Trinidad and neighboring islands. Molecular Ecology, 20, 601–618.

    Article  PubMed  Google Scholar 

  • Wang, L., Liu, S., Zhuang, Z., Guo, L., Meng, Z., & Lin, H. (2013). Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PloS One, 8, e83493.

    Google Scholar 

  • Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15, 1419–1439.

    Article  CAS  PubMed  Google Scholar 

  • Ward, R. D., & Grewe, P. M. (1994). Appraisal of molecular genetic techniques in fisheries. Reviews in Fish Biology and Fisheries, 4, 300–325.

    Article  Google Scholar 

  • Ward, R. D., Woodwark, M., & Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology, 44, 213–232.

    Article  Google Scholar 

  • Wasko, A., & Galetti Jr., P. M. (2002). RAPD analysis in the Neotropical fish Brycon lundii: genetic diversity and its implications for the conservation of the species. Hydrobiologia, 474, 131–137.

    Google Scholar 

  • Wasko, A. P., & Galetti, P. M., Jr. (2003). PCR primed with minisatellite core sequences yields species-specific patterns and assessment of population variability in fishes of the genus Brycon. Journal of Applied Ichthyology, 19, 109–113.

    Google Scholar 

  • Wasko, A. P., Martins, C., Oliveira, C., Senhorini, J. A., & Foresti, F. (2004). Genetic monitoring of the Amazonian fish matrinchã (Brycon cephalus) using RAPD markers: Insights into supportive breeding and conservation programmes. Journal of Applied Ichthyology, 20, 48–52.

    Article  CAS  Google Scholar 

  • Watson, L. C., Stewart, D. J., & Kretzer, A. M. (2016). Genetic diversity and population structure of the threatened Giant arapaima in southwestern Guyana: Implications for their conservation. Copeia, 104, 864–872.

    Article  Google Scholar 

  • Weber, J. L., & May, P. E. (1989). Abundant class of human DNA polymorhisms which can be typed using the polymerare chain reaction. American Journal of Human Genetics, 44, 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, J. L., & Wong, C. (1993). Mutation of human short tandem repeats. Human Molecular Genetics, 2, 1123–1128.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, W. (1908). Über den nachweis der vererbung beim menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 64, 368–382.

    Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Google Scholar 

  • Whitmore, D. H. (1990). Electrophoretic and isoelectric focusing techniques in fisheries management (350 p). Boca Raton: CRC Press.

    Google Scholar 

  • White, P. S., & Densmore, L. D. (1992). Mitochondrial DNA isolation. In A. R. Hoelzel (Ed.), Molecular genetic analysis of populations: A practical approach (pp. 29–58). New York: Oxford University Press.

    Google Scholar 

  • Willette, D. A., Allendorf, F. W., Barber, P. H., Barshis, D. J., Carpenter, K. E., Crandall, E. D., Cresko, W. A., Fernandez-Silva, L., Matz, M. V., Meyer, E., Santos, M. D., Seeb, L. W., & Seeb, J. E. (2014). So, you want to use next-generation sequencing in marine systems? Insight from the pan-Pacific advanced studies institute. Bulletin of Marine Science, 90, 79–122.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willing, E.-M., Bentzen, P., Oosterhout, C. V., Hoffmann, M., Cable, J., Breden, F., Weigel, D., & Dreyer, C. (2010). Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Molecular Ecology, 19, 968–984.

    Article  PubMed  Google Scholar 

  • Willis, S. C., Macrander, J., Farias, I. F., & Ortí, O. (2012). Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evolutionary Biology, 12, 96.

    Google Scholar 

  • Willis, S. C., Winemiller, K. O., Montanã, C. G., Macrander, J., Reiss, P., Farias, I. P., & Ortí, G. (2015). Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery. Conservation Genetics, 16, 1345–1357.

    Google Scholar 

  • Witzenberger, K. A., & Hochkirch, A. (2011). Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity and Conservation, 20, 1843–1861.

    Article  Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. (1940). Breeding structure of populations in relation to speciation. American Naturalist, 74, 232–248.

    Article  Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of population, variability within and among natural populations. Chicago: The University of Chicago Press. 590 p.

    Google Scholar 

  • Wu, K. S., & Tanksley, S. D. (1993). Abundance, polymorphism and genetic mapping of microsatellites in rice. Molecular and General Genetics, 241, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, A., & White, R. (1980). A highly polymorphic locus in human DNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 6754–6758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazbeck, G. M., & Kalapothakis, E. (2007). Isolation and characterization of microsatellite DNA in the Piracema fish Prochilodus lineatus (Characiformes). Genetics and Molecular Research, 6, 1026–1034.

    CAS  PubMed  Google Scholar 

  • Yi, S., & Streelman, J. T. (2005). Genome size is negatively correlated with effective population size in ray-finned fish. Trends in Genetics, 21, 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Zaganini, R. L., Hashimoto, D. T., Pereira, L. H. G., Oliveira, C., Mendonça, F. F., Foresti, F., & Porto-Foresti, F. (2012). Isolation and characterization of microsatellite loci in the Neotropical fish Astyanax altiparanae (Teleostei: Characiformes) and cross-species amplification. Journal of Genetics, 91, e24–e27.

    PubMed  Google Scholar 

  • Zaniboni-Filho, E., & Schulz, U. (2003). Migratory fishes of the Uruguay River. In J. Carolsfeld, B. Harvey, C. Ross, & A. Baer (Eds.), Migratory fishes of South America: Biology, fisheries, and conservation status (pp. 157–194). Victoria: World Fisheries Trust/IDRC/World Bank.

    Google Scholar 

  • Zalapa, J. E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., McCown, B., Harbut, R., & Simon, P. (2012). Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany, 99, 193–208.

    Article  CAS  PubMed  Google Scholar 

  • Zamudio, K. R., Robertson, J. M., Chan, L. M., & Sazima, I. (2009). Population structure in the catfish Trichogenes longipinnis: Drift offset by asymmetrical migration in a tiny geographic range. Biological Journal of the Linnean Society, 97, 259–274.

    Article  Google Scholar 

  • Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Zawadzki, C. H., Weber, C., Pavanelli, C. S., & Renesto, E. (2002). Morphological and biochemical comparison of two allopatrid populations of Hypostomus margaritifer (Regan, 1907) (Osteichthyes, Loricariidae) from the upper Paraná River basin, Brazil. Acta Scientiarum, 24, 499–505.

    CAS  Google Scholar 

  • Zawadzki, C. H., Renesto, E., Reis, R. E., Moura, M. O., & Mateus, R. P. (2005). Allozyme relationships in Hypostomines (Teleostei: Loricariidae) from the Itaipu reservoir, upper Rio Paraná basin, Brazil. Genetica, 123, 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Zawadzki, C. H., Renesto, E., Peres, M. D., & Paiva, S. (2008). Allozyme variation among three populations of the armored catfish Hypostomus regani (Ihering, 1905) (Siluriformes, Loricariidae) from the Paraná and Paraguay River basins, Brazil. Genetics and Molecular Biology, 31, 767–771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hilsdorf, A.W.S., Hallerman, E.M. (2017). Characterization of Genetic Resources. In: Genetic Resources of Neotropical Fishes. Springer, Cham. https://doi.org/10.1007/978-3-319-55838-7_3

Download citation

Publish with us

Policies and ethics