Towards Best Practice in Establishing Patient-Derived Xenografts

  • Gail P. Risbridger
  • Mitchell G. Lawrence
Part of the Molecular and Translational Medicine book series (MOLEMED)


It is remarkable that human tumour tissues can be grown for months, or even years, as serially transplantable, patient-derived xenografts (PDXs) in immunocompromised mice. The grafting technique used has been refined over the last few decades, so it is now possible to successfully engraft most tumour types, albeit with varying take rates. This review focuses on the methodological requirements to establish successful PDXs. The first step is selecting viable tumour tissue from surgical resections of local or metastatic disease, ascites, pleural effusions, biopsies, circulating tumour cells, rapid autopsies or even organoids. Once grafts are prepared, sometimes with Matrigel or stroma, their likelihood of growing is affected by the strain of immunocompromised host mice and the graft site, which may be subcutaneous, subrenal capsule or orthotopic. Finally, once PDXs are established, authentication assays can be used to rule out possible misidentification or cross-contamination following serial passaging. By carefully optimising all of these steps, PDXs can be grown as efficiently as possible, providing invaluable models for preclinical cancer research.


Patient-derived xenograft Tumour graft Metastasis Subcutaneous Renal capsule Orthotopic Immunocompromised mice Prostate cancer Breast cancer 



Non-obese diabetic severe combined immunodeficient mice


Circulating tumour cell

NK cell

Natural killer cell


NOD-SCID interleukin-2 receptor gamma chain null mice


PDX Authentication System


Patient-derived xenograft


Severe combined immunodeficient mice


Single nucleotide polymorphism


Short tandem repeat


Transurethral resection of the prostate



We thank Laura Porter for her help preparing the manuscript. The Monash University Prostate Cancer Research Program is supported by funding from the Peter and Lyndy White Foundation, the EJ Whitten Foundation and TissuPath Pathology. GPR is supported by a fellowship from the National Health and Medical Research Council (1102752).


  1. 1.
    Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 2016;167(1):260–274. e22. doi: 10.1016/j.cell.2016.08.041.
  2. 2.
    Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25. doi: 10.1038/nm.3954.PubMedCrossRefGoogle Scholar
  3. 3.
    Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013. doi: 10.1158/2159-8290.CD-14-0001.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16(5):1442–51. doi: 10.1158/1078-0432.CCR-09-2878.PubMedCrossRefGoogle Scholar
  5. 5.
    Lawrence MG, Taylor RA, Toivanen R, Pedersen J, Norden S, Pook DW, et al. A preclinical xenograft model of prostate cancer using human tumors. Nat Protoc. 2013;8(5):836–48. doi: 10.1038/nprot.2013.043.PubMedCrossRefGoogle Scholar
  6. 6.
    Presnell SC, Werdin ES, Maygarden S, Mohler JL, Smith GJ. Establishment of short-term primary human prostate xenografts for the study of prostate biology and cancer. Am J Pathol. 2001;159(3):855–60. doi: 10.1016/S0002-9440(10)61761-0.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Toivanen R, Berman DM, Wang H, Pedersen J, Frydenberg M, Meeker AK, et al. Brief report: a bioassay to identify primary human prostate cancer repopulating cells. Stem Cells. 2011;29(8):1310–4. doi: 10.1002/stem.668.PubMedCrossRefGoogle Scholar
  8. 8.
    Lawrence MG, Pook DW, Wang H, Porter LH, Frydenberg M, Kourambas J, et al. Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate. 2015;75(13):1475–83. doi: 10.1002/pros.23039.PubMedCrossRefGoogle Scholar
  9. 9.
    Risbridger GP, Taylor RA, Clouston D, Sliwinski A, Thorne H, Hunter S, et al. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur Urol. 2015;67(3):496–503. doi: 10.1016/j.eururo.2014.08.007.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Y, Revelo M, Sudilovsky D, Cao M, Chen W, Goetz L, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64(2):149–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010;176(4):1901–13. doi: 10.2353/ajpath.2010.090873.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Alkema NG, Tomar T, Duiker EW, Jan Meersma G, Klip H, van der Zee AG, et al. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Sci Rep. 2015;5:14495. doi: 10.1038/srep14495.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74(4):1272–83. doi: 10.1158/0008-5472.CAN-13-2921-T.PubMedCrossRefGoogle Scholar
  14. 14.
    Alsop K, Thorne H, Sandhu S, Hamilton A, Mintoff C, Christie E, et al. A community-based model of rapid autopsy in end-stage cancer patients. Nat Biotechnol. 2016;34(10):1010–4. doi: 10.1038/nbt.3674.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. Prostate. 2000;43(4):263–71. doi: 10.1002/1097-0045(20000601)43:4<263::AID-PROS5>​3.0.CO;2-I.
  16. 16.
    Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17. doi: 10.1186/s13058-015-0523-1.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20. doi: 10.1038/nm.2454.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ilie M, Nunes M, Blot L, Hofman V, Long-Mira E, Butori C, et al. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med. 2015;4(2):201–11. doi: 10.1002/cam4.357.PubMedCrossRefGoogle Scholar
  19. 19.
    Sivanand S, Pena-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med. 2012;4(137):137ra75. doi: 10.1126/scitranslmed.3003643.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Blance RN, Sims AH, Anderson E, Howell A, Clarke RB. Normal breast tissue implanted into athymic nude mice identifies biomarkers of the effects of human pregnancy levels of estrogen. Cancer Prev Res (Phila). 2009;2(3):257–64. doi: 10.1158/1940-6207.CAPR-08-0161.CrossRefGoogle Scholar
  21. 21.
    Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. Identification of a cell of origin for human prostate cancer. Science. 2010;329(5991):568–71. doi: 10.1126/science.1189992.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71. doi: 10.1073/pnas.0401064101.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Montecinos VP, Godoy A, Hinklin J, Vethanayagam RR, Smith GJ. Primary xenografts of human prostate tissue as a model to study angiogenesis induced by reactive stroma. PLoS One. 2012;7(1):e29623. doi: 10.1371/journal.pone.0029623.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Staack A, Kassis AP, Olshen A, Wang Y, Wu D, Carroll PR, et al. Quantitation of apoptotic activity following castration in human prostatic tissue in vivo. Prostate. 2003;54(3):212–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Gray DR, Huss WJ, Yau JM, Durham LE, Werdin ES, Funkhouser Jr WK, et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 2004;64(5):1712–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for eralpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22. doi: 10.1016/j.ccell.2016.02.002.PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72. doi: 10.1038/ng.3221.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dotto GP. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest. 2014;124(4):1446–53. doi: 10.1172/JCI72589.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ, et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol. 2013;60(14.23):14.23.1–14.23.43. doi: 10.1002/0471141755.ph1423s60.Google Scholar
  30. 30.
    Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE, et al. Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol. 2012;19 Suppl 3:S395–403. doi: 10.1245/s10434-011-1839-4.
  31. 31.
    McAuliffe PF, Evans KW, Akcakanat A, Chen K, Zheng X, Zhao H, et al. Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. PLoS One. 2015;10(9):e0136851. doi: 10.1371/journal.pone.0136851.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Allaway RJ, Fischer DA, de Abreu FB, Gardner TB, Gordon SR, Barth RJ, et al. Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites. Oncotarget. 2016;7(13):17087–102. doi: 10.18632/oncotarget.7718.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542. doi: 10.1038/srep08542.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28. doi: 10.1158/1078-0432.CCR-12-0372.PubMedCrossRefGoogle Scholar
  35. 35.
    Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518(7538):240–4. doi: 10.1038/nature13948.PubMedCrossRefGoogle Scholar
  36. 36.
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23. doi: 10.1158/2159-8290.CD-11-0109.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. doi: 10.1038/nature05372.PubMedCrossRefGoogle Scholar
  38. 38.
    Rashidi B, Sun FX, Jiang P, An Z, Gamagami R, Moossa AR, et al. A nude mouse model of massive liver and lymph node metastasis of human colon cancer. Anticancer Res. 2000;20(2A):715–22.PubMedGoogle Scholar
  39. 39.
    Fleming JM, Miller TC, Meyer MJ, Ginsburg E, Vonderhaar BK. Local regulation of human breast xenograft models. J Cell Physiol. 2010;224(3):795–806. doi: 10.1002/jcp.22190.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu JF, Palakurthi S, Zeng Q, Zhou S, Ivanova E, Huang W, et al. Establishment of patient-derived tumor xenograft models of epithelial ovarian cancer for pre-clinical evaluation of novel therapeutics. Clin Cancer Res. 2016. doi: 10.1158/1078-0432.CCR-16-1237.
  41. 41.
    Verschraegen CF, Hu W, Du Y, Mendoza J, Early J, Deavers M, et al. Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Mullerian cancers. Clin Cancer Res. 2003;9(2):845–52.PubMedGoogle Scholar
  42. 42.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97. doi: 10.1158/0008-5472.CAN-12-4081.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Craft N, Chhor C, Tran C, Belldegrun A, DeKernion J, Witte ON, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 1999;59(19):5030–6.PubMedGoogle Scholar
  44. 44.
    Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J, et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest. 2008;118(8):2697–710. doi: 10.1172/JCI33093.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    McCulloch DR, Opeskin K, Thompson EW, Williams ED. BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate. 2005;65(1):35–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Goncalves A, Bertucci F, Guille A, Garnier S, Adelaide J, Carbuccia N, et al. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study. Oncotarget. 2016. doi: 10.18632/oncotarget.12714.
  47. 47.
    Klein KA, Reiter RE, Redula J, Moradi H, Zhu XL, Brothman AR, et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med. 1997;3(4):402–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Hong MK, Sapre N, Phal PM, Macintyre G, Chin X, Pedersen JS, et al. Percutaneous image-guided biopsy of prostate cancer metastases yields samples suitable for genomics and personalised oncology. Clin Exp Metastasis. 2014;31(2):159–67. doi: 10.1007/s10585-013-9617-2.PubMedCrossRefGoogle Scholar
  49. 49.
    Kohli M, Wang L, Xie F, Sicotte H, Yin P, Dehm SM, et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS One. 2015;10(12):e0145176. doi: 10.1371/journal.pone.0145176.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rimondi E, Rossi G, Bartalena T, Ciminari R, Alberghini M, Ruggieri P, et al. Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol. 2011;77(1):34–42. doi: 10.1016/j.ejrad.2010.06.055.PubMedCrossRefGoogle Scholar
  51. 51.
    Hooper JE, Cantor EL, Ehlen MS, Banerjee A, Malempati S, Stenzel P, et al. A patient-derived xenograft model of parameningeal embryonal rhabdomyosarcoma for preclinical studies. Sarcoma. 2015;2015:826124. doi: 10.1155/2015/826124.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S, et al. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res. 2000;6(3):1038–45.PubMedGoogle Scholar
  53. 53.
    Xie T, Musteanu M, Lopez-Casas PP, Shields DJ, Olson P, Rejto PA, et al. Whole exome sequencing of rapid autopsy tumors and xenograft models reveals possible driver mutations underlying tumor progression. PLoS One. 2015;10(11):e0142631. doi: 10.1371/journal.pone.0142631.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7. doi: 10.1038/nature14347.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22(4):369–78. doi: 10.1038/nm.4053.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94. doi: 10.1038/nature14410.PubMedCrossRefGoogle Scholar
  57. 57.
    Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–44. doi: 10.1038/nbt.2576.PubMedCrossRefGoogle Scholar
  58. 58.
    Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903. doi: 10.1038/nm.3600.PubMedCrossRefGoogle Scholar
  59. 59.
    Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia Iglesia-Vicente J, Gong Y, Galsky M, et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp. 2015;(105):53182. doi: 10.3791/53182.
  60. 60.
    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87. doi: 10.1016/j.cell.2014.08.016.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2016. doi: 10.1136/gutjnl-2016-311447.
  62. 62.
    Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20. doi: 10.1126/science.1253533.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rossi E, Rugge M, Facchinetti A, Pizzi M, Nardo G, Barbieri V, et al. Retaining the long-survive capacity of circulating tumor cells (CTCs) followed by xeno-transplantation: not only from metastatic cancer of the breast but also of prostate cancer patients. Oncoscience. 2014;1(1):49–56. doi: 10.18632/oncoscience.8.PubMedGoogle Scholar
  64. 64.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593–8. doi: 10.1038/nature07567.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70–8. doi: 10.1016/j.jim.2009.06.008.PubMedGoogle Scholar
  67. 67.
    Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75(5):892–901. doi: 10.1158/0008-5472.CAN-14-2613.PubMedCrossRefGoogle Scholar
  68. 68.
    Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50. doi: 10.1038/nprot.2007.25.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhao H, Nolley R, Chen Z, Peehl DM. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am J Pathol. 2010;177(1):229–39. doi: 10.2353/ajpath.2010.090821.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhao H, Thong A, Nolley R, Reese SW, Santos J, Ingels A, et al. Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy. J Transl Med. 2013;11:199. doi: 10.1186/1479-5876-11-199.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bernardo C, Costa C, Sousa N, Amado F, Santos L. Patient-derived bladder cancer xenografts: a systematic review. Transl Res. 2015;166(4):324–31. doi: 10.1016/j.trsl.2015.02.001.PubMedCrossRefGoogle Scholar
  72. 72.
    Hutmacher DW, Holzapfel BM, De-Juan-Pardo EM, Pereira BA, Ellem SJ, Loessner D, et al. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance. Curr Opin Biotechnol. 2015;35:127–32. doi: 10.1016/j.copbio.2015.06.001.PubMedCrossRefGoogle Scholar
  73. 73.
    Toivanen R, Frydenberg M, Murphy D, Pedersen J, Ryan A, Pook D, et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci Transl Med. 2013;5(187):187ra71. doi: 10.1126/scitranslmed.3005688.PubMedCrossRefGoogle Scholar
  74. 74.
    Clemmesen J. On transplantation of tumor cells to normal and pre-irradiated heterologous organisms. Cancer Res. 1937;29(2):313–32.Google Scholar
  75. 75.
    Grogan JB, Hardy JD. Increased survival of xenogeneic tumor in thymectomized hosts. J Surg Res. 1968;8(1):7–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand. 1969;77(4):758–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Bosma MJ. B and T cell leakiness in the scid mouse mutant. Immunodefic Rev. 1992;3(4):261–76.PubMedGoogle Scholar
  79. 79.
    Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.PubMedGoogle Scholar
  80. 80.
    Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 2010;107(42):18115–20. doi: 10.1073/pnas.1006732107.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.PubMedCrossRefGoogle Scholar
  83. 83.
    Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. doi: 10.1038/nri2017.PubMedCrossRefGoogle Scholar
  84. 84.
    Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, Weinberg RA, et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 2007;67(5):2062–71. doi: 10.1158/0008-5472.CAN-06-3895.PubMedCrossRefGoogle Scholar
  85. 85.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135(2):415–32. doi: 10.1007/s10549-012-2164-8.PubMedCrossRefGoogle Scholar
  86. 86.
    Dall G, Vieusseux J, Unsworth A, Anderson R, Britt K. Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms. J Cancer. 2015;6(12):1331–6. doi: 10.7150/jca.10890.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gakhar G, Wight-Carter M, Andrews G, Olson S, Nguyen TA. Hydronephrosis and urine retention in estrogen-implanted athymic nude mice. Vet Pathol. 2009;46(3):505–8. doi: 10.1354/vp.08-VP-0180-N-BC.PubMedCrossRefGoogle Scholar
  88. 88.
    Michiel Sedelaar JP, Dalrymple SS, Isaacs JT. Of mice and men-warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate. 2013;73(12):1316–25. doi: 10.1002/pros.22677.PubMedCrossRefGoogle Scholar
  89. 89.
    Nicholson TM, Uchtmann KS, Valdez CD, Theberge AB, Miralem T, Ricke WA. Renal capsule xenografting and subcutaneous pellet implantation for the evaluation of prostate carcinogenesis and benign prostatic hyperplasia. J Vis Exp. 2013;(78):e50574. doi: 10.3791/50574.
  90. 90.
    Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4(11):1670–80. doi: 10.1038/nprot.2009.171.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol. 2005;96(1):48–55. doi: 10.1016/j.ygyno.2004.09.025.PubMedCrossRefGoogle Scholar
  92. 92.
    Read M, Liu D, Duong CP, Cullinane C, Murray WK, Fennell CM, et al. Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann Surg Oncol. 2016;23(1):305–11. doi: 10.1245/s10434-015-4425-3.PubMedCrossRefGoogle Scholar
  93. 93.
    Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Subcapsular transplantation of tissue in the kidney. Cold Spring Harb Protoc. 2014;2014(7):737–40. doi: 10.1101/pdb.prot078089.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Fu E, Nelson KE, Ramsey SA, Foley JO, Helton K, Yager P. Modeling of a competitive microfluidic heterogeneous immunoassay: sensitivity of the assay response to varying system parameters. Anal Chem. 2009;81(9):3407–13. doi: 10.1021/ac802672v.PubMedCrossRefGoogle Scholar
  95. 95.
    Fu XY, Theodorescu D, Kerbel RS, Hoffman RM. Extensive multi-organ metastasis following orthotopic onplantation of histologically-intact human bladder carcinoma tissue in nude mice. Int J Cancer. 1991;49(6):938–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Saar M, Korbel C, Linxweiler J, Jung V, Kamradt J, Hasenfus A, et al. Orthotopic tumorgrafts in nude mice: a new method to study human prostate cancer. Prostate. 2015;75(14):1526–37. doi: 10.1002/pros.23027.PubMedCrossRefGoogle Scholar
  97. 97.
    Topp MD, Hartley L, Cook M, Heong V, Boehm E, McShane L, et al. Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol Oncol. 2014;8(3):656–68. doi: 10.1016/j.molonc.2014.01.008.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kraaij R, van Weerden WM, de Ridder CM, Gussenhoven EJ, Honkoop J, Nasu Y, et al. Validation of transrectal ultrasonographic volumetry for orthotopic prostate tumours in mice. Lab Anim. 2002;36(2):165–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A. 1992;89(12):5645–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lin D, Watahiki A, Bayani J, Zhang F, Liu L, Ling V, et al. ASAP1, a gene at 8q24, is associated with prostate cancer metastasis. Cancer Res. 2008;68(11):4352–9. doi: 10.1158/0008-5472.CAN-07-5237.PubMedCrossRefGoogle Scholar
  101. 101.
    Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 2011;17(17):5793–800. doi: 10.1158/1078-0432.CCR-11-0341.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kato C, Fujii E, Chen YJ, Endaya BB, Matsubara K, Suzuki M, et al. Spontaneous thymic lymphomas in the non-obese diabetic/Shi-scid, IL-2R gamma (null) mouse. Lab Anim. 2009;43(4):402–4. doi: 10.1258/la.2009.009012.PubMedCrossRefGoogle Scholar
  103. 103.
    Wetterauer C, Vlajnic T, Schuler J, Gsponer JR, Thalmann GN, Cecchini M, et al. Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate. 2015;75(6):585–92. doi: 10.1002/pros.22939.PubMedCrossRefGoogle Scholar
  104. 104.
    Bondarenko G, Ugolkov A, Rohan S, Kulesza P, Dubrovskyi O, Gursel D, et al. Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia. 2015;17(9):735–41. doi: 10.1016/j.neo.2015.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chen K, Ahmed S, Adeyi O, Dick JE, Ghanekar A. Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein–Barr virus. PLoS One. 2012;7(6):e39294. doi: 10.1371/journal.pone.0039294.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    John T, Yanagawa N, Kohler D, Craddock KJ, Bandarchi-Chamkhaleh B, Pintilie M, et al. Characterization of lymphomas developing in immunodeficient mice implanted with primary human non-small cell lung cancer. J Thorac Oncol. 2012;7(7):1101–8. doi: 10.1097/JTO.0b013e3182519d4d.PubMedCrossRefGoogle Scholar
  107. 107.
    Vander Griend DJ, Konishi Y, De Marzo AM, Isaacs JT, Meeker AK. Dual-label centromere and telomere FISH identifies human, rat, and mouse cell contribution to Multispecies recombinant urogenital sinus xenografts. Prostate. 2009;69(14):1557–64. doi: 10.1002/pros.21001.PubMedCrossRefGoogle Scholar
  108. 108.
    Nardone RM, MacLeod RA, Capes-Davis A. Cancer: authenticate new xenograft models. Nature. 2016;532(7599):313.PubMedCrossRefGoogle Scholar
  109. 109.
    Mattie M, Christensen A, Chang MS, Yeh W, Said S, Shostak Y, et al. Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia. 2013;15(10):1138–50.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    El-Hoss J, Jing D, Evans K, Toscan C, Xie J, Lee H, et al. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts. Oncotarget. 2016. doi: 10.18632/oncotarget.11125.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Prostate Research Group, Cancer Program - Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer ConsortiumMonash UniversityClaytonAustralia
  2. 2.Prostate Cancer Translational Research Program, Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneAustralia
  3. 3.Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneAustralia
  4. 4.Prostate Research Group, Cancer Program - Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer ConsortiumMonash UniversityClaytonAustralia

Personalised recommendations