First-Generation Tumor Xenografts: A Link Between Patient-Derived Xenograft Models and Clinical Disease

  • Xin Dong
  • Peter W. Gout
  • Lu Yi
  • Yinhuai Wang
  • Yong Xu
  • Kuo Yang
Part of the Molecular and Translational Medicine book series (MOLEMED)


First-generation tumor xenografts, also called primary xenografts, are patient-derived tumor xenografts (PDXs) in the initial human-to-mouse generation harboring tumor tissues directly derived from patients. Compared to transplantable PDX models established via serial passaging, the first-generation xenografts are advantageous in several aspects, such as shorter engraftment time and better retention of intra-tumoral heterogeneity and tumor microenvironment of the original patients’ tumor tissues. Although first-generation xenografts have not been widely used or well characterized, an increasing amount of evidence suggests that they provide valuable tools for fulfilling real-time personalized drug testing, improving predictive powers of in vivo preclinical models in anticancer drug discovery and development, and studying cancer-stromal interactions in the context of an intact human cancer tissue microenvironment. In this chapter, we review the current comprehension of first-generation xenografts and their potential applications in contemporary preclinical cancer research and management of the disease.


First-generation xenografts PDX Precision medicine Tumor heterogeneity Tumor microenvironment Cancer-associated stroma Drug development 



Extracellular matrix


Non-small cell lung cancer


Prostate cancer


Patient-derived xenograft




Subrenal capsule



We thank Drs. Dong Lin and Hui Xue at the Living Tumor Laboratory ( for their original inputs and suggestions. This study was supported by Dr. Yuzhuo Wang’s grants from the Canadian Institutes of Health Research, Terry Fox Research Institute, BC Cancer Foundation, Prostate Cancer Canada, and Princess Margaret Hold’em for Life.


  1. 1.
    Arrowsmith J. Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov. 2011;10(5):328–9. doi: 10.1038/nrd3439.PubMedCrossRefGoogle Scholar
  2. 2.
    Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12(8):569. doi: 10.1038/nrd4090.PubMedCrossRefGoogle Scholar
  3. 3.
    DiMasi JA, Reichert JM, Feldman L, Malins A. Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther. 2013;94(3):329–35. doi: 10.1038/clpt.2013.117.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cell. 2016;39(2):77–86. doi: 10.14348/molcells.2016.2350.CrossRefGoogle Scholar
  5. 5.
    Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013. doi: 10.1158/2159-8290.CD-14-0001.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Izumchenko E, Meir J, Bedi A, Wysocki PT, Hoque MO, Sidransky D. Patient-derived xenografts as tools in pharmaceutical development. Clin Pharmacol Ther. 2016;99(6):612–21. doi: 10.1002/cpt.354.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84. doi: 10.1158/0008-5472.CAN-13-2971.PubMedCrossRefGoogle Scholar
  8. 8.
    Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79–80:222–37. doi: 10.1016/j.addr.2014.09.009.PubMedCrossRefGoogle Scholar
  9. 9.
    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50. doi: 10.1038/nrclinonc.2012.61.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16(5):1442–51. doi: 10.1158/1078-0432.CCR-09-2878.PubMedCrossRefGoogle Scholar
  11. 11.
    Montecinos VP, Godoy A, Hinklin J, Vethanayagam RR, Smith GJ. Primary xenografts of human prostate tissue as a model to study angiogenesis induced by reactive stroma. PLoS One. 2012;7(1):e29623. doi: 10.1371/journal.pone.0029623.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50. doi: 10.1038/nprot.2007.25.PubMedCrossRefGoogle Scholar
  13. 13.
    Calles A, Rubio-Viqueira B, Hidalgo M. Primary human non-small cell lung and pancreatic tumorgraft models—utility and applications in drug discovery and tumor biology. Curr Protoc Pharmacol. 2013;Chapter 14:Unit 14.26. doi: 10.1002/0471141755.ph1426s61.
  14. 14.
    Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, et al. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res. 2006;12(13):4043–54. doi: 10.1158/1078-0432.CCR-06-0252.PubMedCrossRefGoogle Scholar
  15. 15.
    Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009;85(2):217–21. doi: 10.1038/clpt.2008.200.PubMedCrossRefGoogle Scholar
  16. 16.
    Nemati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin Cancer Res. 2010;16(8):2352–62. doi: 10.1158/1078-0432.CCR-09-3066.PubMedCrossRefGoogle Scholar
  17. 17.
    Sivanand S, Pena-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med. 2012;4(137):137ra75. doi: 10.1126/scitranslmed.3003643.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ilie M, Nunes M, Blot L, Hofman V, Long-Mira E, Butori C, et al. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med. 2015;4(2):201–11. doi: 10.1002/cam4.357.PubMedCrossRefGoogle Scholar
  19. 19.
    Jin K, Teng L, Shen Y, He K, Xu Z, Li G. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 2010;12(7):473–80. doi: 10.1007/s12094-010-0540-6.PubMedCrossRefGoogle Scholar
  20. 20.
    Oh BY, Lee WY, Jung S, Hong HK, Nam DH, Park YA, et al. Correlation between tumor engraftment in patient-derived xenograft models and clinical outcomes in colorectal cancer patients. Oncotarget. 2015;6(18):16059–68. doi: 10.18632/oncotarget.3863.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73(17):5315–9. doi: 10.1158/0008-5472.CAN-13-1069.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Houghton JA, Houghton PJ, Green AA. Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res. 1982;42(2):535–9.PubMedGoogle Scholar
  23. 23.
    Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol. 2005;96(1):48–55. doi: 10.1016/j.ygyno.2004.09.025.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64(2):149–59. doi: 10.1002/pros.20225.PubMedCrossRefGoogle Scholar
  25. 25.
    Bogden AE, Cobb WR, Lepage DJ, Haskell PM, Gulkin TA, Ward A, et al. Chemotherapy responsiveness of human tumors as first transplant generation xenografts in the normal mouse: six-day subrenal capsule assay. Cancer. 1981;48(1):10–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74(4):1272–83. doi: 10.1158/0008-5472.CAN-13-2921-T.PubMedCrossRefGoogle Scholar
  27. 27.
    Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73. doi: 10.1158/0008-5472.CAN-08-4210.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014;87(1):150–61. doi: 10.1016/j.bcp.2013.06.020.PubMedCrossRefGoogle Scholar
  29. 29.
    Williams SA, Anderson WC, Santaguida MT, Dylla SJ. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest. 2013;93(9):970–82. doi: 10.1038/labinvest.2013.92.PubMedCrossRefGoogle Scholar
  30. 30.
    Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17. doi: 10.1186/s13058-015-0523-1.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    de Plater L, Lauge A, Guyader C, Poupon MF, Assayag F, de Cremoux P, et al. Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer. 2010;103(8):1192–200. doi: 10.1038/sj.bjc.6605900.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456–68. doi: 10.1158/1078-0432.CCR-08-0138.PubMedCrossRefGoogle Scholar
  33. 33.
    DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20. doi: 10.1038/nm.2454.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 2011;17(17):5793–800. doi: 10.1158/1078-0432.CCR-11-0341.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kleine W. Prognostic significance of growth characteristics of xenotransplanted ovarian carcinomas into nude mice. Gynecol Oncol. 1986;25(1):65–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Fichtner I, Slisow W, Gill J, Becker M, Elbe B, Hillebrand T, et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer. 2004;40(2):298–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Migliardi G, Sassi F, Torti D, Galimi F, Zanella ER, Buscarino M, et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin Cancer Res. 2012;18(9):2515–25. doi: 10.1158/1078-0432.CCR-11-2683.PubMedCrossRefGoogle Scholar
  38. 38.
    Garber K. From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst. 2009;101(1):6–8. doi: 10.1093/jnci/djn481.PubMedCrossRefGoogle Scholar
  39. 39.
    Fiebig HH, Schuchhardt C, Henss H, Fiedler L, Lohr GW. Comparison of tumor response in nude mice and in the patients. Behring Inst Mitt. 1984;74:343–52.Google Scholar
  40. 40.
    Merk J, Rolff J, Becker M, Leschber G, Fichtner I. Patient-derived xenografts of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy? Eur J Cardiothorac Surg. 2009;36(3):454–9. doi: 10.1016/j.ejcts.2009.03.054.PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Soler R, Kemp B, Wu QP, Mao L, Gomez J, Zeleniuch-Jacquotte A, et al. Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res. 2000;6(12):4932–8.PubMedGoogle Scholar
  42. 42.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51. doi: 10.1126/science.1090922.PubMedCrossRefGoogle Scholar
  43. 43.
    Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9. doi: 10.1038/nm.2328.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66(23):11089–93. doi: 10.1158/0008-5472.CAN-06-2407.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. doi: 10.1038/nature10983.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol. 2011;3(1):a003228. doi: 10.1101/cshperspect.a003228.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sundararaghavan HG, Saunders RL, Hammer DA, Burdick JA. Fiber alignment directs cell motility over chemotactic gradients. Biotechnol Bioeng. 2013;110(4):1249–54. doi: 10.1002/bit.24788.PubMedCrossRefGoogle Scholar
  48. 48.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol. 2002;12(2):105–12. doi: 10.1006/scbi.2001.0418.PubMedCrossRefGoogle Scholar
  50. 50.
    Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28. doi: 10.1158/1078-0432.CCR-12-0372.PubMedCrossRefGoogle Scholar
  51. 51.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  52. 52.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. doi: 10.1038/nm1093.PubMedCrossRefGoogle Scholar
  53. 53.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43. doi: 10.1073/pnas.0509182102.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(34):5373–80. doi: 10.1200/JCO.2006.05.9584.CrossRefGoogle Scholar
  55. 55.
    Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003;98(5):1089–99. doi: 10.1002/cncr.11618.PubMedCrossRefGoogle Scholar
  56. 56.
    Shang B, Liu Y, Jiang SJ. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179. doi: 10.1038/srep15179.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005;106(5):1565–73. doi: 10.1182/blood-2005-02-0516.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–9. doi: 10.1016/j.ijrobp.2012.12.025.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ambrogio C, Carmona FJ, Vidal A, Falcone M, Nieto P, Romero OA, et al. Modeling lung cancer evolution and preclinical response by orthotopic mouse allografts. Cancer Res. 2014;74(21):5978–88. doi: 10.1158/0008-5472.CAN-14-1606.PubMedCrossRefGoogle Scholar
  60. 60.
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209. doi: 10.1056/NEJMoa1213261.PubMedCrossRefGoogle Scholar
  61. 61.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10. doi: 10.1038/nature10738.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–5. doi: 10.1038/nature13968.PubMedCrossRefGoogle Scholar
  63. 63.
    Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol. 2007;19(2):203–8. doi: 10.1016/j.coi.2007.02.001.PubMedCrossRefGoogle Scholar
  64. 64.
    Pufnock JS, Rothstein JL. Oncoprotein signaling mediates tumor-specific inflammation and enhances tumor progression. J Immunol. 2009;182(9):5498–506. doi: 10.4049/jimmunol.0801284.PubMedCrossRefGoogle Scholar
  65. 65.
    Bogachek MV, Park JM, De Andrade JP, Kulak MV, White JR, Wu T, et al. A novel animal model for locally advanced breast cancer. Ann Surg Oncol. 2015;22(3):866–73. doi: 10.1245/s10434-014-4174-8.PubMedCrossRefGoogle Scholar
  66. 66.
    Mohseni MJ, Amanpour S, Muhammadnejad S, Sabetkish S, Muhammadnejad A, Heidari R, et al. Establishment of a patient-derived Wilms’ tumor xenograft model: a promising tool for individualized cancer therapy. J Pediatr Urol. 2014;10(1):123–9. doi: 10.1016/j.jpurol.2013.07.009.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Res. 2014;16(2):R36. doi: 10.1186/bcr3640.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology. 2012;14(5):574–83. doi: 10.1093/neuonc/nos061.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bogner PN, Patnaik SK, Pitoniak R, Kannisto E, Repasky E, Hylander B, et al. Lung cancer xenografting alters microRNA profile but not immunophenotype. Biochem Biophys Res Commun. 2009;386(2):305–10. doi: 10.1016/j.bbrc.2009.06.021.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi: 10.1038/nature08989.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14(1):R11. doi: 10.1186/bcr3095.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Herter-Sprie GS, Kung AL, Wong KK. New cast for a new era: preclinical cancer drug development revisited. J Clin Invest. 2013;123(9):3639–45. doi: 10.1172/JCI68340.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    John T, Kohler D, Pintilie M, Yanagawa N, Pham NA, Li M, et al. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2011;17(1):134–41. doi: 10.1158/1078-0432.CCR-10-2224.PubMedCrossRefGoogle Scholar
  74. 74.
    Dancey JE, Bedard PL, Onetto N, Hudson TJ. The genetic basis for cancer treatment decisions. Cell. 2012;148(3):409–20. doi: 10.1016/j.cell.2012.01.014.PubMedCrossRefGoogle Scholar
  75. 75.
    Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(15):1806–14. doi: 10.1200/JCO.2012.46.8934.CrossRefGoogle Scholar
  76. 76.
    Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther. 2011;10(8):1311–6. doi: 10.1158/1535-7163.MCT-11-0233.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346(6216):1480–6. doi: 10.1126/science.1254721.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007;13(13):3989–98. doi: 10.1158/1078-0432.CCR-07-0078.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97. doi: 10.1158/0008-5472.CAN-12-4081.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518(7539):422–6. doi: 10.1038/nature13952.PubMedCrossRefGoogle Scholar
  81. 81.
    Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22. doi: 10.1038/ni.2703.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(6):610–8. doi: 10.1200/JCO.2010.30.5425.CrossRefGoogle Scholar
  83. 83.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13. doi: 10.1056/NEJMoa020177.PubMedCrossRefGoogle Scholar
  84. 84.
    Bogden AE, Griffin W, Reich SD, Costanza ME, Cobb WR. Predictive testing with the subrenal capsule assay. Cancer Treat Rev. 1984;11(Suppl A):113–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Cunha GR. Epithelial-stromal interactions in development of the urogenital tract. Int Rev Cytol. 1976;47:137–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Cunha GR, Lung B, Kato K. Role of the epithelial-stromal interaction during the development and expression of ovary-independent vaginal hyperplasia. Dev Biol. 1977;56(1):52–67. doi: 10.1016/0012-1606(77)90154-3.PubMedCrossRefGoogle Scholar
  87. 87.
    Johnson JR, Hammond WG, Benfield JR, Tesluk H. Successful xenotransplantation of human lung cancer correlates with the metastatic phenotype. Ann Thorac Surg. 1995;60(1):32–6. discussion 6–7PubMedCrossRefGoogle Scholar
  88. 88.
    Griffin TW, Bogden AE, Reich SD, Antonelli D, Hunter RE, Ward A, et al. Initial clinical trials of the subrenal capsule assay as a predictor of tumor response to chemotherapy. Cancer. 1983;52(12):2185–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25. doi: 10.1038/nm.3954.PubMedCrossRefGoogle Scholar
  90. 90.
    Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31. doi: 10.1054/bjoc.2001.1796.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23. doi: 10.1158/2159-8290.CD-11-0109.PubMedCrossRefGoogle Scholar
  92. 92.
    Kortmann U, McAlpine JN, Xue H, Guan J, Ha G, Tully S, et al. Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts. Clin Cancer Res. 2011;17(4):783–91. doi: 10.1158/1078-0432.CCR-10-1382.PubMedCrossRefGoogle Scholar
  93. 93.
    Jimeno A, Tan AC, Coffa J, Rajeshkumar NV, Kulesza P, Rubio-Viqueira B, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 2008;68(8):2841–9. doi: 10.1158/0008-5472.CAN-07-5200.PubMedCrossRefGoogle Scholar
  94. 94.
    Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, et al. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res. 2009;15(12):4138–46. doi: 10.1158/1078-0432.CCR-08-3021.PubMedCrossRefGoogle Scholar
  95. 95.
    Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC, et al. An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol. 2014;16(5):457–68. doi: 10.1038/ncb2953.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30. doi: 10.1016/j.celrep.2013.08.022.PubMedCrossRefGoogle Scholar
  97. 97.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. doi: 10.1038/nm.3394.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263–74. doi: 10.1038/nrc1586.PubMedCrossRefGoogle Scholar
  99. 99.
    Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75(15):2963–8. doi: 10.1158/0008-5472.CAN-15-0727.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400. doi: 10.1038/ncb1658.PubMedCrossRefGoogle Scholar
  101. 101.
    Kutys ML, Doyle AD, Yamada KM. Regulation of cell adhesion and migration by cell-derived matrices. Exp Cell Res. 2013;319(16):2434–9. doi: 10.1016/j.yexcr.2013.05.030.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Quiros RM, Valianou M, Kwon Y, Brown KM, Godwin AK, Cukierman E. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol. 2008;110(1):99–109. doi: 10.1016/j.ygyno.2008.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200(4):429–47. doi: 10.1002/path.1398.PubMedCrossRefGoogle Scholar
  104. 104.
    Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54. doi: 10.1038/nature12626.PubMedCrossRefGoogle Scholar
  105. 105.
    Gray DR, Huss WJ, Yau JM, Durham LE, Werdin ES, Funkhouser Jr WK, et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 2004;64(5):1712–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J. Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2002;54(1):215–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xin Dong
    • 1
  • Peter W. Gout
    • 1
    • 2
  • Lu Yi
    • 3
  • Yinhuai Wang
    • 3
  • Yong Xu
    • 4
  • Kuo Yang
    • 4
  1. 1.Living Tumor Laboratory, BC Cancer Agency/Vancouver Prostate CentreVancouverCanada
  2. 2.Department of Experimental Therapeutics, BC Cancer Research CentreVancouverCanada
  3. 3.Department of UrologyThe Second Xiangya Hospital, Zhongnan UniversityChangshaChina
  4. 4.Tianjin Institute of UrologyTianjin Medical UniversityTianjinChina

Personalised recommendations