Skip to main content

Patient-Derived Tumor Xenografts: Historical Background

  • Chapter
  • First Online:
Patient-Derived Xenograft Models of Human Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 751 Accesses

Abstract

The poor success rate of preclinical cancer drug development and screening in the past decades was in part due to a lack of clinically relevant animal cancer models. Recently, patient-derived xenograft (PDX) models, which are developed by implanting small pieces of human tumors into immune-deficient hosts, provide a vastly improved representation of a patient’s clinical situation and have been used as a valuable tool for anticancer drug development and precision medicine. Although PDX technology may be considered as a recent innovation, using an animal model to recapitulate a human cancer has been a long-standing goal of cancer research as early as the eighteenth century. In this chapter, we review the history of the development of PDX modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NOD:

Non-obese diabetic

PDX:

Patient-derived xenograft

SCID:

Severe combined immunodeficiency

References

  1. Woglom WH. The study of experimental cancer, a review, vol. 1. New York: Columbia University Press; 1913.

    Google Scholar 

  2. Woolley GW. Discussion of part VI*. Ann N Y Acad Sci. 1958;76(3):821–5. doi:10.1111/j.1749-6632.1958.tb54899.x.

    Article  CAS  PubMed  Google Scholar 

  3. Takayama S, Woolley GW. Successful intramuscular growth of human tumor in conditioned mice*. Ann N Y Acad Sci. 1958;76(3):797–811. doi:10.1111/j.1749-6632.1958.tb54897.x.

    Article  CAS  PubMed  Google Scholar 

  4. Gallily R, Woolley GW. The human tumor in the mouse*. Ann N Y Acad Sci. 1958;76(3):791–6. doi:10.1111/j.1749-6632.1958.tb54896.x.

    Article  CAS  PubMed  Google Scholar 

  5. Greene HSN. Heterologous transplantation of human and other mammalian tumors. Science. 1938;88(2285):357–8. doi:10.1126/science.88.2285.357.

    Article  CAS  PubMed  Google Scholar 

  6. Greene HSN. Heterologous transplantation of mammalian tumors. J Exp Med. 1941;73(4):475–86. doi:10.1084/jem.73.4.475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greene HSN. The heterologous transplantation of mouse tumors induced in vitro. Cancer Res. 1946;6(8):396–402.

    CAS  PubMed  Google Scholar 

  8. Greene HSN. The use of the mouse eye in transplantation experiments. Cancer Res. 1947;7(8):491–501.

    Google Scholar 

  9. Adams RA, Flowers A, Sundeen R, Merk LP. Chemotherapy and immunotherapy of three human lymphomas serially transplantable in the neonatal Syrian hamster. Cancer. 1972;29(2):524–33.

    Article  CAS  PubMed  Google Scholar 

  10. Cobb LM. Metastatic spread of human tumour implanted into thymectomized, antithymocyte serum treated hamsters. Br J Cancer. 1972;26(3):183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cobb LM. The hamster as a host for the growth and study of human tumor cell populations. Cancer Res. 1974;34(5):958–63.

    CAS  PubMed  Google Scholar 

  12. Korngold L, Lipari R. Tissue antigens of human tumors grown in rats, hamsters, and eggs. Cancer Res. 1955;15(3):159–61.

    CAS  PubMed  Google Scholar 

  13. Smith GM. The effect of cytotoxic agents on human tumours transplanted to the hamster cheek pouch. Br J Cancer. 1969;23(1):78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greene HSN, Lund PK. The heterologous transplantation of human cancers. Cancer Res. 1944;4(6):352–63.

    Google Scholar 

  15. Greene HSN, Saxton JA. Uterine adenomata in the rabbit. J Exp Med. 1938;67(5):691–708. doi:10.1084/jem.67.5.691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy JB. Transplantability of malignant tumors to the embryos of a foreign species. J Am Med Assoc. 1912;LIX(11):874–5. doi:10.1001/jama.1912.04270090118016.

    Article  Google Scholar 

  17. Toolan HW. Successful subcutaneous growth and transplantation of human tumors in X-irradiated laboratory animals. Proc Soc Exp Biol Med. 1951;77(3):572–8.

    Article  CAS  PubMed  Google Scholar 

  18. Toolan HW. Transplantable human neoplasms maintained in cortisone-treated laboratory animals: H.S. No. 1; H.Ep. No. 1; H.Ep. No. 2; H.Ep. No. 3; and H.Emb.Rh. No. 1. Cancer Res. 1954;14(9):660–6.

    CAS  PubMed  Google Scholar 

  19. Toolan HW. Permanently transplantable human tumors maintained in conditioned heterologous hosts: H. Chon. #1, H. Ep. #4, and H. Ad. #1. Cancer Res. 1957;17(5):418–20.

    CAS  PubMed  Google Scholar 

  20. Toolan HW. The transplantable human tumor*. Ann N Y Acad Sci. 1958;76(3):733–41. doi:10.1111/j.1749-6632.1958.tb54891.x.

    Article  CAS  PubMed  Google Scholar 

  21. Palm JE, Teller MN, Merker PC, Woolley GW. Host conditioning in experimental chemotherapy*. Ann N Y Acad Sci. 1958;76(3):812–20. doi:10.1111/j.1749-6632.1958.tb54898.x.

    Article  CAS  PubMed  Google Scholar 

  22. Clemmesen J. On transplantation of tumor cells to normal and pre-irradiated heterologous organisms. Cancer Res. 1937;29(2):313–32.

    Google Scholar 

  23. Grogan JB, Hardy JD. Increased survival of xenogeneic tumor in thymectomized hosts. J Surg Res. 1968;8(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta pathologica et microbiologica Scandinavica. 1969;77(4):758–60.

    Article  CAS  PubMed  Google Scholar 

  25. Isaacson JH, Cattanach BM. Mouse News Lett. 1962;27:31.

    Google Scholar 

  26. Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217(5126):370–1.

    Article  CAS  PubMed  Google Scholar 

  27. Merenda C, Sordat B, Mach JP, Carrel S. Human endometrial carcinomas serially transplanted in nude mice and established in continuous cell lines. Int J Cancer. 1975;16(4):559–70.

    Article  CAS  PubMed  Google Scholar 

  28. Shimosato Y, Kameya T, Nagai K, Hirohashi S, Koide T, Hayashi H, et al. Transplantation of human tumors in nude mice. J Natl Cancer Inst. 1976;56(6):1251–60.

    Article  CAS  PubMed  Google Scholar 

  29. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.

    Article  CAS  PubMed  Google Scholar 

  30. Angevin E, Glukhova L, Pavon C, Chassevent A, Terrier-Lacombe MJ, Goguel AF, et al. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Investig. 1999;79(7):879–88.

    CAS  PubMed  Google Scholar 

  31. Huynh H, Soo KC, Chow PK, Panasci L, Tran E. Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res. 2006;12(14 Pt 1):4306–14. doi:10.1158/1078-0432.CCR-05-2568.

    Article  CAS  PubMed  Google Scholar 

  32. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  33. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006;12(15):4652–61. doi:10.1158/1078-0432.CCR-06-0113.

    Article  CAS  PubMed  Google Scholar 

  34. Visonneau S, Cesano A, Torosian MH, Santoli D. Cell therapy of a highly invasive human breast carcinoma implanted in immunodeficient (SCID) mice. Clin Cancer Res. 1997;3(9):1491–500.

    CAS  PubMed  Google Scholar 

  35. Xu Y, Silver DF, Yang NP, Oflazoglu E, Hempling RE, Piver MS, et al. Characterization of human ovarian carcinomas in a SCID mouse model. Gynecol Oncol. 1999;72(2):161–70. doi:10.1006/gyno.1998.5238.

    Article  CAS  PubMed  Google Scholar 

  36. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    CAS  PubMed  Google Scholar 

  37. Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, Schweitzer PA, et al. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol. 1996;171(2):186–99. doi:10.1006/cimm.1996.0193.

    Article  CAS  PubMed  Google Scholar 

  38. Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer. 2003;105(4):444–53. doi:10.1002/ijc.11125.

    Article  CAS  PubMed  Google Scholar 

  39. Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, et al. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res. 2006;12(13):4043–54. doi:10.1158/1078-0432.CCR-06-0252.

    Article  CAS  PubMed  Google Scholar 

  40. Press JZ, Kenyon JA, Xue H, Miller MA, De Luca A, Miller DM, et al. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol. 2008;110(2):256–64. doi:10.1016/j.ygyno.2008.03.011.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Investig. 2005;85(11):1392–404.

    Article  PubMed  Google Scholar 

  42. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. doi:10.1038/nri3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38.

    Article  CAS  PubMed  Google Scholar 

  44. DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A. 1995;92(2):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood. 1996;87(3):956–67.

    CAS  PubMed  Google Scholar 

  46. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013. doi:10.1158/2159-8290.CD-14-0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. John JTA, Aik Choon T, Colin DW, Antonio J, Stephen L, Todd MP, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50. doi:10.1038/nrclinonc.2012.61.

    Article  Google Scholar 

  48. Rosfjord E, Lucas J, Li G, Gerber HP. Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 2014;91(2):135–43. doi:10.1016/j.bcp.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  49. Siolas D, Hannon GJ, Despina S, Gregory JH. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73:5315–9. doi:10.1158/0008-5472.can-13-1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all past and current members at the Living Tumor Laboratory (www.livingtumorlab.com) for their original work, thoughts, and suggestions. This study was supported by Dr. Yuzhuo Wang’s grants from the Canadian Institutes of Health Research, Terry Fox Research Institute, BC Cancer Foundation, Prostate Cancer Canada, and Princess Margaret Hold’em for Life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lin, D., Wang, X., Gout, P.W., Wang, Y. (2017). Patient-Derived Tumor Xenografts: Historical Background. In: Wang, Y., Lin, D., Gout, P. (eds) Patient-Derived Xenograft Models of Human Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55825-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55825-7_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55824-0

  • Online ISBN: 978-3-319-55825-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics