Optimization and Simulation of Fuel Distribution. Case Study: Mexico City

  • Ann WellensEmail author
  • Esther Segura Pérez
  • Daniel Tello Gaete
  • Wulfrano Gómez Gallardo


In this chapter, the combined use of optimization and simulation in the design of a distribution network for hazardous materials in the northern region of Mexico City is assessed. A mathematical programming model was developed to allow for fuel dispatch truck allocation, minimizing the total distribution cost. Heuristics were used to solve the model and different simulation scenarios were applied to do what-if analysis to be able to decide on different managerial situations. Reviewing simulation and optimization results, an appropriate estimate of the fuel quantity to order (EOQ), the best type of truck to carry out the supply, as well as the ordering schedule that minimizes the associated costs of distribution and inventory, is provided. This real-life Mexican case study shows how a combined optimization-simulation approach, specifically taking advantage of heuristic methods to diminish computing time, can provide a practical, efficient and flexible tool for optimization assessment in operational research.


Planning Horizon Storage Tank Service Station Greedy Randomize Adaptive Search Procedure Mathematical Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrosino, D., Sciomachen, A., & Scutellà, M. (2009). A heuristic approach based on multi-exchange techniques for a regional fleet assignment location-routing problem. Computers and Operations Research, 36, 442–460.CrossRefzbMATHGoogle Scholar
  2. 2.
    Andrade, R., Tello, D., & Romero, O. (2015). Modelo matemático para la administración de inventario en una microempresa del rubro alimenticio, caso de aplicación. Ingeniería, negocios e innovación1, 7–21.Google Scholar
  3. 3.
    Archetti, C., & Speranza, M. G. (2014). A survey on matheuristics for routing problems. EURO Journal on Computational Optimization, 2, 223–246.CrossRefzbMATHGoogle Scholar
  4. 4.
    Arrelid, D. Y., & Backman, S. (2012). How to manage and improve inventory control. A study at AB Ph Nederman & Co for products with different demand patterns. Lund, Lund University. Master thesis.Google Scholar
  5. 5.
    Arvidsson, N. (2013). The milk run revisited: A load factor paradox with economic and environmental implications for urban freight transport. Transportation Research Part A, 51, 56–62.Google Scholar
  6. 6.
    Benavides, F. (2012). Planificación de movimientos aplicada en robótica autónoma móvil. Tesis para Maestría en Informática: Universidad de la República Uruguay.Google Scholar
  7. 7.
    Benítez, R. (2012). Influencia de los costos de mantenimiento en la toma de decisiones (p. 13). La Habana: Centro de Inmunología Molecular.Google Scholar
  8. 8.
    Benítez, R., Segura, E., & Lozano, A. (2014). Inventory service-level optimization in a distribution network design problem using heterogeneous fleet. In 17th International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China (pp. 2342–2347).Google Scholar
  9. 9.
    Bilgen, B., & Ozkarahan, I. (2007). A mixed-integer linear programming model for bulk grain blending and shipping. International Journal of Production Economics, 107, 555–571.CrossRefGoogle Scholar
  10. 10.
    Birgisson, G., & Lavarco, W. (2004). An effective regulatory regime for transportation of hydrogen. International Journal of Hydrogen Energy, 29, 771–780.CrossRefGoogle Scholar
  11. 11.
    Boudia, M., Louly, M., & Prins, C. (2007). A reactive GRASP and path re-linking for a combined production-distribution problem. Computers and Operation Research, 34, 3402–3419.CrossRefzbMATHGoogle Scholar
  12. 12.
    Bruns, A., & Klose, A. (1995). An iterative heuristic for location-routing problems based on clustering. In Proceedings of the 2nd International Workshop on Distribution Logistics, The Netherlands (pp. 1–6).Google Scholar
  13. 13.
    Campbell, A., & Savelsbergh, M. (2004). A decomposition approach for the inventory routing problem. Transportation Science, 38, 488–502.CrossRefGoogle Scholar
  14. 14.
    Caramia, M., Dell’Olmo, P., Gentili, M., & Mircandani, P. B. (2007). Delivery itineraries and distribution capacity of a freight network with time slots. Computers and Operations Research, 34, 1585–1600.Google Scholar
  15. 15.
    Caric, T., & Gold, H. (2008). Numerical analysis and scientific computing. InTech.Google Scholar
  16. 16.
    Çetinkaya, S., Mutlu, F., & Lee, C. Y. (2006). A comparison of outbound dispatch policies for integrated inventory and transportation decisions. European Journal of Operational Research, 171, 1094–1112.CrossRefzbMATHGoogle Scholar
  17. 17.
    Chopra, S. (2001). Designing the distribution network in supply chain. Kellogg School of Management, Northwestern University.Google Scholar
  18. 18.
    Chopra, S., & Meindl, P. (2001). Supplier chain management—Strategies, planning, and operation. Upper Saddle River, New Jersey: Prentice Hall.Google Scholar
  19. 19.
    Contreras, E., & Silva, J. (2014). Simulación del proceso de logística inversa de envases y empaques vacíos de plaguicidas en la unidad de riego pantano de Vargas de Boyacá-Colombia. En: VII Simposio Internacional de Ingeniería Industrial: Actualidad y Nuevas Tendencias. Lima, Perú. 689 p.Google Scholar
  20. 20.
    Corberán, A., Martí, R., & Sanchis, J. (2002). A GRASP heuristic for the mixed Chinese postman problem. European Journal of Operational Research, 142, 70–80.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Crainic, T., Mancini, S., Perboli. G., & Tadei, R. (2012). GRASP with path re-linking for the two-echelon vehicle routing problem. CIRRELET.Google Scholar
  22. 22.
    Dantzig, G., & Ramser, J. (1959). The truck dispatching problem. Management Science, 6, 80–91.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Desrochers, M., Lenstra, J., & Savelsbergh, M. (1990). A classification scheme for vehicle routing and scheduling problems. European Journal of Operational Research, 46, 322–332.CrossRefzbMATHGoogle Scholar
  24. 24.
    Du, T., Wang, F., & Lu, Y. (2007). A real-time vehicle-dispatching system for consolidating milk runs. Transportation Research Part E, 43, 565–577.CrossRefGoogle Scholar
  25. 25.
    Dubedout, H., Dejax, P., Neagu, N., & Yeung, T. (2012). A GRASP for real-life inventory routing problem: Application to bulk gas distribution. 9th International Conference on Modeling, Optimization & Simulation, Bordeaux, France.Google Scholar
  26. 26.
    Festa, P., & Resende, M. (2009). An annotated bibliography of GRASP—Part I: algorithms. International Transactions in Operational Research, 16, 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Flisberg, P., Lidén, B., & Rönnqvist, M. (2007). A hybrid method based on linear programming and tabu search for routing of logging trucks. Computers and Operations Research, 36, 1122–1144.CrossRefzbMATHGoogle Scholar
  28. 28.
    Flores, I. (2015). Programación Dinámica. Universidad Nacional Autónoma de México, Facultad de Ingeniería. Class notes.Google Scholar
  29. 29.
    Ghafoori, E., Flynn, P., & Feddes, J. (2007). Pipeline vs. truck transport of beef cattle manure. Biomass and Bioenergy, 31, 168–175.CrossRefGoogle Scholar
  30. 30.
    Gillet, B., & Johnson, J. (1976). Multi-terminal vehicle-dispatch algorithm. Omega, 4, 711–718.CrossRefGoogle Scholar
  31. 31.
    Golden, B. L., Raghavan, S., & Edward, A. (2010). The vehicle routing problem: latest advances and new challenges. Operations Research/Computer Science Interfaces Series.Google Scholar
  32. 32.
  33. 33.
    Gribkovskaia, I., Halskau, O., Laporte, G., & Vlcek, M. (2007). General solutions to the single vehicle routing problem with pickups and deliveries. European Journal of Operational Research, 180, 568–584.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Guth, N., & Klingel, P. (2012). Chapter 15. Demand allocation in water distribution network modelling—A GIS-based approach using Voronoi diagrams with constraints. In M. A. Bhuiyan (Ed.), Application of geographic information systems.Google Scholar
  35. 35.
    Halper, R. (2011). The mobile facility routing problem. Transport Science, 45, 413–434.CrossRefGoogle Scholar
  36. 36.
    Hamdi-Dhaoui, K., Labadie, N., & Yalaoui, A. (2011). The vehicle routing problem with conflicts. IFAC Proceedings, 44, 9799–9804.CrossRefzbMATHGoogle Scholar
  37. 37.
    Heizer, J., & Render, B. (2008). Dirección de la producción y operaciones (8ª ed.). Madrid: Pearson Education.Google Scholar
  38. 38.
    Helgesen, Ø., Havold, J., & Nesset, E. (2010). Impacts of store and chain images on the ‘‘quality–satisfaction–loyalty process’’ in petrol retailing. Journal of Retailing and Consumer Services, 17, 109–118.CrossRefGoogle Scholar
  39. 39.
    INEGI. (2016). Cuentame - número de habitantes en la Ciudad de México. Consultation date: 04 mayo 2016.
  40. 40.
    Iwaszko, T. (2012). Généralisation du diagramme de Voronoï et placement de formes géométriques complexes dans un nuage de points. Diss. Université de Haute Alsace-Mulhouse.Google Scholar
  41. 41.
    Janssens, G., & Ramaekers, K. (2011). A linear programing formulation for an inventory management decision problem with a service constraint. Expert Systems with Applications, 7, 7929–7934.CrossRefGoogle Scholar
  42. 42.
    Kapur, K. (1970). Mathematical methods of optimization for multi-objective transportation systems. Socio-Economic Planning Sciences, 4, 451–467.CrossRefGoogle Scholar
  43. 43.
    Kasthuri, R., & Seshaiah, C. (2013). Multi-item EOQ model with demand dependent on unit price. Applied and Computational Mathematics, 2, 149–151.CrossRefGoogle Scholar
  44. 44.
    Knust, S., & Schumacher, E. (2011). Shift scheduling for tank trucks. Omega, 39, 513–521.CrossRefGoogle Scholar
  45. 45.
    Köksalan, M., & Süral, H. (1999). Efes beverage group makes location and distribution decisions for its malt plants. Interfaces, 29, 89–103.CrossRefGoogle Scholar
  46. 46.
    Kotb, K., Genedi, H., & Zaki, S. (2011). Quality control for probabilistic single-item EOQ model with zero lead time under two restrictions: A geometric programming approach. International Journal of Mathematical Archive, 2, 335–338.zbMATHGoogle Scholar
  47. 47.
    Krajewski, L., Ritzman, L., & Malhotra, M. (2008). Administración de Operaciones (8ª ed.). Pearson Educación: México D.F.Google Scholar
  48. 48.
    Lacomme, P., Toussaint, H., & Duhamel, C. (2013). A GRASP x ELS for the vehicle routing problem with basic three-dimensional loading constraints. Engineering Applications of Artificial Intelligence, 26, 1795–1810.CrossRefGoogle Scholar
  49. 49.
    Laporte, G. (2009). Fifty years of vehicle routing. INFORMS, 43, 408–416.Google Scholar
  50. 50.
    Laporte, G., Gendreau, M., Potvin, J., & Semet, F. (2000). Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research, 7, 285–300.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Law, A. M. (2015). Simulation modeling and analysis (5th ed.). New York: McGraw-Hill. 804 p.Google Scholar
  52. 52.
    Lenstra, J. K., & Rinnooy-Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11, 221–227.CrossRefzbMATHGoogle Scholar
  53. 53.
    Li, J., Borenstein, D., & Mirchandani, P. (2006). Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil. Omega, 36, 1133–1149.CrossRefGoogle Scholar
  54. 54.
    Lizotte, Y. (1987). Truck and shovel dispatching rules assessment using simulation. Mining Science and Technology, 5, 45–58.CrossRefGoogle Scholar
  55. 55.
    Martí, R., et al. (2011). Multi-objective grasp with path-relinking. AT&T Labs Research Technical Report.Google Scholar
  56. 56.
    Melkote, S., & Daskin, M. S. (2001). Capacitated facility location/network design problems. European Journal of Operational Research, 129, 481–495.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: a synthesis and future research directions. European Journal of Operational Research, 108, 1–15.CrossRefzbMATHGoogle Scholar
  58. 58.
    MirHassani, S. (2008). An operational planning model for petroleum products logistics under uncertainty. Applied Mathematics and Computation, 196, 744–751.Google Scholar
  59. 59.
    Mora, L. (2008). Gestión Logística Integral. Bogotá: Ecoe Ediciones.Google Scholar
  60. 60.
    Muyldermans, L., & Pang, G. (2010). On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm. European Journal of Operational Research, 206, 93–103.CrossRefzbMATHGoogle Scholar
  61. 61.
    MWLAP. (2002). A field guide to fuel handling, transportation and storage (41 p.). Ministry of water, Land and Air Protection, British Columbia, Canada.Google Scholar
  62. 62.
    Navarro, A. (2007). Planificación de redes de distribución: aproximación vía clustering, diagramas de Voronoi y búsqueda tabú. Tesis para optar al grado de Magíster en Ciencias de la Ingeniería. Santiago, Pontificia Universidad Católica de Chile. Escuela de Ingeniería.Google Scholar
  63. 63.
    NOM-012-SCT-2-2014. (2014). Publicado en el Diario Oficial de la Federación, México.
  64. 64.
    NOM-EM-001-ASEA-2015. (2015). Publicado en el Diario Oficial de la Federación, México.
  65. 65.
    Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial tessellations: concepts and applications of Voronoi diagrams. New York: Willey.Google Scholar
  66. 66.
    Pemex. (2008). Manual de operaciones de la Franquicia PEMEX. Versión 2008-1.
  67. 67.
    Pootakham, T., & Kumar, A. (2010). A comparison of pipeline versus truck transport of bio-oil. Bioresource Technology, 101, 414–421.CrossRefGoogle Scholar
  68. 68.
    PROFECO. (2016). Reporte gasolina. Consultation date: November 12, 2016.
  69. 69.
    Raviv, T., & Kaspi, M. (2012). The locomotive fleet fueling problem. Operations Research Letters, 40, 39–45.MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Resende G. C., & Ribeiro C. C. (2013). Chapter 11. GRASP: Greedy randomized adaptive search procedures. In E. K. Burke & G. Kendall (Eds.), Search methodologies: introductory tutorials in optimization and decision support techniques (2nd ed., pp. 287–312). New York: Springer.Google Scholar
  71. 71.
    Reyes, E., Tamayo, Y., & Leyva, M. (2011). Procedimiento para el diseño de redes de distribución logística. Contribuciones a la economía Julio. s.p.Google Scholar
  72. 72.
    Ronen, D. (1988). Perspectives on practical aspects of truck routing and scheduling. European Journal of Operational Research, 35, 137–145.CrossRefGoogle Scholar
  73. 73.
    Russell, R., Chiang, W., & Zepeda, D. (2008). Integrating multi-product production and distribution in newspaper logistics. Computers and Operations Research, 35, 1576–1588.CrossRefzbMATHGoogle Scholar
  74. 74.
    SEDUVI. (2016). Programa delegacional de desarrollo urbano en Azcapotzalco. Zonificación y norma de ordenación. Secretaría de Desarrollo Urbano y Vivienda, CDMX.
  75. 75.
    Segura, E. Carmona, R., & Lozano, A. (2013) A heuristic for designing inventory-routing networks considering location problem and heterogeneous fleet (pp. 1–18). In 13th World Conference on Transport Research.Google Scholar
  76. 76.
    Segura, E., Wellens A. G., Tello Gaete D. A., Gómez Hernández A. A., & Rojas Mejía N. L. (2016). Optimización de una red de distribución de un material peligroso al norte de la ciudad de México. En: XIX Congreso Panamericano de Ingeniería de Tránsito, Transporte y Logística, México.Google Scholar
  77. 77.
    Shah, N. (1996). Mathematical programming techniques for crude oil scheduling. Computers and Chemical Engineering, 20, 1227–1232.Google Scholar
  78. 78.
    Shen, Q., Chen, H., & Chu, F. (2008). Model and algorithm for an inventory routing problem in crude oil transportation. Journal of Advanced Manufacturing Systems, 7, 297–301.CrossRefGoogle Scholar
  79. 79.
    Silver, E., & Meal, H. (1973). A heuristic for selecting lot size for the case of a deterministic time varying demand rate and discrete opportunities for replenishment. Production and Inventory Management, 14, 64–74.Google Scholar
  80. 80.
    Silver, E., & Peterson, R. (1985). Decision systems for inventory management and production planning. New York: Willey.Google Scholar
  81. 81.
    Sombat, S. (2004). A heuristic for minimizing inventory and transportation costs of a multi–item inventory–routing system. Symposium: Research Operations Annual, 2548, 59–66.Google Scholar
  82. 82.
    Sombat, S. (2013). GRASP with VLSN for an inventory—routing problem. Proceedings of the International Conference on Tourism, Transport and Logistics, Paris, France.Google Scholar
  83. 83.
    Sousa, E., Ferreira, E., Goldbarg, M., & Navarro, T. (2010). A biobjetive GRASP algorithm for distribution of oil products by pipeline networks. Rio Oil & Gas Expo and Conference. Google Scholar
  84. 84.
    Steer D. G. (2011). Análisis de costos y competitividad de modos de transporte terrestre de carga interurbana: Informe final. Preparado para el Ministerio de Transportes y Telecomunicaciones in Chile, 162 p.Google Scholar
  85. 85.
    Taha, H. (2012). Investigación de Operaciones (9ª ed.). Pearson Education: México D.F.Google Scholar
  86. 86.
    Tawfik, L., & Chauvel, A. M. (1992). Adminstración de la producción (404 p.). Mc Graw-Hill.Google Scholar
  87. 87.
    Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research, 22, 329–337.MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Villegas, J., et al. (2013). A matheuristic for the truck and trailer routing problem. European Journal of Operational Research, 230, 231–244.MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Wang, X., & Regan, A. (2002). Local truckload pickup and delivery with hard time window constraints. Transportation Research Part B, 36, 97–112.CrossRefGoogle Scholar
  90. 90.
    Wesolowsky, G. O., & Trustcott, W. G. (1975). The multiperiod location-allocation problem with relocation of facilities. Management Science, 22, 57–65.CrossRefzbMATHGoogle Scholar
  91. 91.
    Winkler, J., Henning, B., & Marsosudiro, P. (1992). Project Summary. The liquid and gaseous fuel distribution system. United States Environ-mental Protection Agency. Air and Energy Engineering, EPA/600/S2-91/057.Google Scholar
  92. 92.
    Winston, W. (2004). Investigación de operaciones. Aplicaciones y Algo-ritmos (4ª ed.). México: International Thomson Editores.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ann Wellens
    • 1
    Email author
  • Esther Segura Pérez
    • 1
  • Daniel Tello Gaete
    • 2
  • Wulfrano Gómez Gallardo
    • 1
  1. 1.Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Facultad de Ciencias de la IngenieríaUniversidad Austral de ChileValdiviaChile

Personalised recommendations