Skip to main content

A Simulation-Based Optimization Analysis of Retail Outlet Ordering Policies and Vendor Minimum Purchase Requirements in a Distribution System

  • Chapter
  • First Online:
  • 1179 Accesses

Abstract

This chapter presents an approach involving both discrete event simulation (DES) and optimization to address operational problems faced by a distribution system. In the system modeled, vendors may require minimum purchase requirements for each order. The model can be used to determine whether retail outlets should order product directly from the vendors, or through a centralized warehouse, as well as whether each retail outlet should violate its pre-specified inventory policy in order to meet vendor-minimum requirements. In addition, the model can be of use as an aid in negotiation with vendors with respect to minimum purchase requirements. The work is based on a project performed for an actual company with a centralized warehouse, located in Louisville, Kentucky, and 19 retail outlets, located throughout the United States.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdul-Jalbar, B., Gutierrez, J. M., & Sicilia, J. (2009). A two-echelon inventory/distribution system with power demand pattern and backorders. International Journal of Production Economics, 122, 519–524.

    Article  Google Scholar 

  2. Albino, V., Carbonara, N., & Giannoccaro, I. (2007). Supply chaín cooperation in industrial districts: A simulation analysis. European Journal of Operational Research, 177(1), 261–280.

    Article  MATH  Google Scholar 

  3. April, J., Glover, F., Kelly, J. P., & Laguna, M. (2003). Practical introduction to simulation optimization. In S. Chick, P. J. Sánchez, D. Ferrin & D. J. Morrice (Eds.), Proceedings of the 2003 Winter Simulation Conference (pp. 71–78). Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  4. Arns, M., Fischer, M., Kemper, P., & Tepper, C. (2002). Supply chain modeling and its analytical evaluation. Journal of the Operational Research Society, 53(8), 885–894.

    Article  MATH  Google Scholar 

  5. Axsater, S. (2000). Simple solution procedure for a class of two-echelon inventory problems. Operations Research, 38(1), 64–69.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boute, R. N., Disney, S. M., Lambrecht, M. R., & Van Houdt, B. (2009). Designing replenishment rules in a two-echelon supply chain with a flexible or an inflexible capacity strategy. International Journal of Production Economics, 119(1), 187–198.

    Article  Google Scholar 

  7. Chen, Y., Mockus, L., Orcun, S., & Reklaitis, G. V. (2012). Simulation-optimization approach to clinical trial supply chain management with demand scenario forecast. Computers and Chemical Engineering, 40, 82–96.

    Article  Google Scholar 

  8. Chen, L.-H., & Kang, F. S. (2007). Integrated vendor-buyer cooperative inventory models with variant permissible delay in payments. European Journal of Operational Research, 183(2), 658–673.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, T. C. E., & Wu, Y. N. (2005). The impact of information sharing in a two-level supply chain with multiple retailers. Journal of the Operational Research Society, 56(10), 1159–1165.

    Article  MATH  Google Scholar 

  10. Chu, Y., You, F., Wassick, J. M., & Agarwal, A. (2015). Simulation-based optimization framework for multi-echelon inventory systems under uncertainty. Computers and Chemical Engineering, 73, 1–16.

    Article  Google Scholar 

  11. Crnkovic, J., Tayi, G. K., & Ballou, D. P. (2008). A decision support framework for exploring supply chain tradeoffs. International Journal of Production Economics, 115, 28–38.

    Article  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  13. Eruguz, A. S., Sahin, E., Jemai, Z., & Dallery, Y. (2016). A comprehensive survey of guaranteed-service models for multi-echelon inventory optimization. International Journal of Production Economics, 172, 110–125.

    Article  Google Scholar 

  14. Fang, D. J., & Li, C. (2014). Simulation-based hybrid approach to robust multi-echelon inventory policies for complex distribution networks. International Journal of Simulation Modelling, 13(3), 377–387.

    Article  Google Scholar 

  15. Güller, M., Uygun, Y., & Noche, B. (2015). Simulation-based optimization for a capacitated multi-echelon production-inventory system. Journal of Simulation, 9(4), 325–336.

    Article  Google Scholar 

  16. Hayya, J. C., Harrison, T. P., & Chatfield, D. C. (2009). A solution for the intractable inventory model when both demand and lead time are stochastic. International Journal of Production Economics, 122, 595–605.

    Article  Google Scholar 

  17. Holweg, M., & Bicheno, J. (2002). Supply chain simulation-a tool for education, enhancement and endeavor. International Journal of Production Economics, 78(2), 163–175.

    Article  Google Scholar 

  18. Hung, W. Y., Kucherenko, S., Samsatli, N. J., & Shah, N. (2004). A flexible and generic approach to dynamic modeling of supply chains. Journal of the Operational Research Society, 55(8), 801–813.

    Article  MATH  Google Scholar 

  19. Jain, S. (2004). Supply chain management tradeoffs analysis. In R. G. Ingalls, M. D. Rosetti, J. S. Smith & B. A. Peters (Eds.), Proceedings of the 2004 Winter Simulation Conference (pp. 1358–1364). Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  20. Jansen, D. R., van Weeen, A., Beulens, A. J. M., & Huirne, R. B. M. (2001). Simulation model of multi-compartment distribution in the catering supply chain. European Journal of Operational Research, 133(1), 210–224.

    Article  MATH  Google Scholar 

  21. Katsaliaki, K., & Brailsford, S. C. (2007). Using simulation to improve the blood supply chain. Journal of the Operational Research Society, 58(2), 219–227.

    Article  MATH  Google Scholar 

  22. Kelton, W. D., Sadowski, R. P., & Swets, N. B. (2010). Simulation with arena (5th ed.). Boston: McGraw-Hill.

    Google Scholar 

  23. Khouja, M. (2003). Synchronization in supply chains: Implications for design and management. Journal of the Operational Research Society, 54(9), 984–994.

    Article  MATH  Google Scholar 

  24. Kochel, P., & Nielander, U. (2005). Simulation-based optimisation of multi-echelon inventory systems. International Journal of Production Economics, 93–94, 505–513.

    Article  Google Scholar 

  25. Miranda, P. A., & Garrido, R. A. (2009). Inventory service–level optimization within distribution network design problem. International Journal of Production Economics, 122, 276–285.

    Article  Google Scholar 

  26. Neale, J. J., & Willems, S. P. (2009). Managing inventory in supply chains with nonstationary demand. Interfaces, 39(5), 388–399.

    Article  Google Scholar 

  27. Ng, C. T., Li, L. Y. O., & Chakhlevitch, K. (2001). Coordinated replinishments with alternative supply sources in two-level supply chains. International Journal of Production Economics, 73, 227–240.

    Article  Google Scholar 

  28. Pedrielli, G., Alfieri, A., & Matta, A. (2015). Integrated simulation–optimisation of pull control systems. International Journal of Production Research, 53(14), 4317–4336.

    Article  MATH  Google Scholar 

  29. Persson, F., & Araldi, M. (2009). The development of a dynamic supply chain analysis tool-integration of SCOR and discrete event simulation. International Journal of Production Economics, 121, 574–583.

    Article  Google Scholar 

  30. Persson, F., & Olhager, J. (2002). Performance simulation of supply chain designs. International Journal of Production Economics, 77, 231–245.

    Article  Google Scholar 

  31. Rosen, S. L., Harmonosky, C. M., & Traband, M. T. (2007). A simulation optimization method that considers uncertainty and multiple performance measures. European Journal of Operational Research, 181(1), 315–330.

    Article  MATH  Google Scholar 

  32. Shin, H., & Benton, W. C. (2007). A quantity discount approach to supply chain coordination. European Journal of Operational Research, 180(2), 601–616.

    Article  MATH  Google Scholar 

  33. Son, J. Y., & Sheu, C. (2008). The impact of replenishment policy deviations in a decentralized supply chain. International Journal of Production Economics, 113, 785–804.

    Article  Google Scholar 

  34. Supply Chain Council (2011). Retrieved July 8, 2011, from http://www.supply-chain.org.

  35. Tannock, J., Cao, B., Farr, R., & Byrne, M. (2007). Data-driven simulation of the supply-chain—Insights from the aerospace sector. International Journal of Production Economics, 110(1), 70–84.

    Article  Google Scholar 

  36. Tee, Y. S., & Rossetti, M. D. (2002). A robustness study of a multi-echelon inventory model via simulation. International Journal of Production Economics, 80, 265–277.

    Article  Google Scholar 

  37. Tsai, S. C., & Zheng, Y. X. (2013). A simulation optimization approach for a two-echelon inventory system with service level constraints. European Journal of Operational Research, 229(2), 364–374.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wagner, S. M., & Friedl, G. (2007). Supplier switching decisions. European Journal of Operational Research, 183(2), 700–717.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded from a contract received through the Center for Engineering Logistics and Distribution (CELDi), a multi-university, multi-disciplinary National Science Foundation sponsored Industry/University Cooperative Research Center (I/UCRC). The authors also acknowledge (1) the aid of two former graduate students from the Department of Industrial Engineering at the University of Louisville: Maria Chiodi and Elizabeth Forney, and (2) the helpful suggestions of anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Evans, G.W., DePuy, G.W., Gupta, A. (2017). A Simulation-Based Optimization Analysis of Retail Outlet Ordering Policies and Vendor Minimum Purchase Requirements in a Distribution System. In: Mujica Mota, M., Flores De La Mota, I. (eds) Applied Simulation and Optimization 2. Springer, Cham. https://doi.org/10.1007/978-3-319-55810-3_8

Download citation

Publish with us

Policies and ethics