Advertisement

Simulation and Optimization Applied to Power Flow in Hybrid Vehicles

  • Guillermo BecerraEmail author
  • Luis Alvarez-Icaza
  • Idalia Flores De La Mota
  • Jose Luis Mendoza-Soto
Chapter

Abstract

This chapter describes the application of optimization to power flow in hybrid electric vehicles, first using a strategy based on bang-bang optimal control and then comparing it with Pontryagin’s alternative. The first strategy, known as the planetary gears system (PGS), focuses on satisfying the kinematic and dynamic constraints of the gears system, starting from the allocation of the electric machine power. The second uses Pontryagins minimum principle (PMP) to solve the energy management problem and decide the amount of power that the electric machine and combustion engine should provide. The approach of the PMP strategy entails three basic elements, namely: first of all, getting the demanded power to be supplemented by the drive machines; secondly, maintaining the state of charge at a level in and around a reference so as to avoid discharging and overloading the batteries and thirdly, saving on fuel. By using the above considerations, a cost function is set out that considers the power from both machines to be inputs. The simulations were performed in Matlab’s Simulink using detailed models of the elements of a hybrid diesel-electric city bus in parallel configuration. The demands are represented by driving cycles while the combustion engine and electric machine are coupled using a planetary gears system.

Keywords

Fuel Consumption Combustion Engine Internal Combustion Engine Electric Machine Model Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors want to thank the support to the DGAPA-UNAM PAPIIT Project 109316.

References

  1. 1.
    Schaefer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research A, 34, 171–205.Google Scholar
  2. 2.
    Guzzella, L., & Sciarretta, A. (2007). Vehicle propulsion systems (Vol. 2, p. 344). Springer.Google Scholar
  3. 3.
    Richard, S. (1994). The history of the international energy agency (p. 453). International Energy Agency.Google Scholar
  4. 4.
    Galeano, E. (1971). Las venas abiertas de Amrica latina (p. 379). Ediciones la cueva.Google Scholar
  5. 5.
    Romo, S. (2014). Sector elctrico ante la Reforma y las energas renovables. Mxico: Morelos.Google Scholar
  6. 6.
    Erjavec, J. (2013). Hybrid, electric & fuel-cell vehicles (p. 428). Delmar.Google Scholar
  7. 7.
    MacLean, H. L., & Lave, L. B. (2003). Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science., 29, 1–69.CrossRefGoogle Scholar
  8. 8.
    Hodkinson, R., & Fenton, J. (2001). Lightweight electric/hybrid vehicle design (p. 280). Plant a tree.Google Scholar
  9. 9.
    Zhao, J., & Wang, J. (2014). Model predictive control of integrated hybrid electric powertrains coupled with aftertreament systems. In Dynamic systems and control conference.Google Scholar
  10. 10.
    Becerra, G. (2010). Modelado y control del acoplamiento entre fuentes de potencia de vehculos hbridos. Available via DIALOG. http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/3993/becerranu%C3%B1ez.pdf?sequence=1. Retrieved May 15, 2016.
  11. 11.
    Tim, H., Stuart, B., & Guido, H. (2014). Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis. Applied Energy. 119, 314–329.Google Scholar
  12. 12.
    Wirasingha, S. G., Gremban, R., & Emadi, A. (2012). Source-to-wheel (STW) analysis of plug-in hybrid electric vehicles. IEEE Transactionson Smart Grid, 3, 316–331.CrossRefGoogle Scholar
  13. 13.
    Miller, J. M. (2010). Propulsion systems for hybrid vehicles (p. 567). IET Renewable Energy Series.Google Scholar
  14. 14.
    Ehsani, M., Gao, Y., & Miller, J. M. (2007). Hybrid electric vehicles: architecture and motor drives. IEEE, 95, 719–728.CrossRefGoogle Scholar
  15. 15.
    American-Rails: American-Rails. (2014). The Montreal locomotive works. http://www.american-rails.com. Retrieved May 06, 2016.
  16. 16.
    Gmotors: American-Rails. (2014). http://www.gmotors.co.uk. Retrieved May 06, 2016
  17. 17.
    Honda, Mxico: Civic Hybrid. (2013). http://www.honda.mx/civic-hybrid/. Retrieved May 06, 2016.
  18. 18.
    Luk, P. C. K., & Rosario, L. C. (2006). Power and energy management of a dual-energy source electric vehicle policy implementation issues. In Power electronics and motion control conference.Google Scholar
  19. 19.
    Delprat, S., Paganelli, G., Guerra, T. M., Santin, J. J., Delhom, M., & Combes, E. (1999). Algorithmic optimization tool for the evaluation of HEV control strategies. In Proceeding electric vehicle symposium Google Scholar
  20. 20.
    Tzeng, S., Huang, K. D., & Chen, C. C. (2005). Optimization of the dual energy-integration mechanism in a parallel-type hybrid vehicle. Applied Energy, 80, 225–245.CrossRefGoogle Scholar
  21. 21.
    Xiong, W., Zhang, Y., & Yin, C. (2009). Optimal energy management for a series-parallel hybrid electric bus. Energy Conversion and Management, 50, 1730–1738.CrossRefGoogle Scholar
  22. 22.
    Yao, H., & Wang, Q. (2015). The control strategy for improving the stability of a powertrain for a compound hybrid power excavator. Journal of Automobile Engineering.Google Scholar
  23. 23.
    Johannesson, L., & Egardt, B. (2008). Approximate dynamic programming applied to parallel hybrid powertrains. In Proceeding of the 17th IFAC, World Congress.Google Scholar
  24. 24.
    Koot, M., Kessels, J. T. B. A., de Jager, B., Heemels, W. P. M. H., van den Bosch, P. P. J., & Steinbuch, M. (2005). Energy management strategies for vehicular electric power systems. Transactions on Vehicular Technology.Google Scholar
  25. 25.
    Paganelli, G., Guerra, T. M., Delprat, S., Santin, J-J., Delhom, M., & Combes, E. (2000). Simulation and assessment of power control strategies for a parallel hybrid car. Journal of Automobile Engineering.Google Scholar
  26. 26.
    Paganelli, G., Ercole, G., Brahma, A., Guezennec, Y., Rizzoni, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles.Google Scholar
  27. 27.
    Paganelli, G., Delprat, S., Guerra, T. M., Rimaux, J., & Santin, J. J. (2002). Equivalent consumption minimization strategy for parallel hybrid powertrains. In Proceeding of the 55th IEEE vehicular technology.Google Scholar
  28. 28.
    Sciarretta, A., Back, M., & Guzzella, L. (2004). Optimal control of parallel hybrid electric vehicles. Transactions on Control Systems Technology.Google Scholar
  29. 29.
    Delprat, S., Lauber, J., Guerra, T. M., & Rimaux, J. (2004). Control of a parallel pybrid powertrain: optimal control. Transactions on Vehicular Technology.Google Scholar
  30. 30.
    Musardo, C., Rizzoni, G., Sataccia, B. (2005). A-ECMS: an adaptive algoritm for hybrid electric vehicle energy management. In Proceeding of the Conference on Decision and Control.Google Scholar
  31. 31.
    Pisu, P., & Rizzoni, G. (2007). A comparative study of supervisory control strategies for hybrid electric vehicles. Transactions on Control Systems Technology.Google Scholar
  32. 32.
    Borhan, H. A., Vahidi, A., Phillips, A. M., Kuang, M. L., & Kolmanovsky, I. V. (2009). Predictive energy management of a power-split hybrid electric vehicle. In Proceeding of the American Control Conference Google Scholar
  33. 33.
    Yan, F., Wang, J., & Huang, K. (2012). Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics. Transactions on Vehicular Technology.Google Scholar
  34. 34.
    Ngo, V., Hofman, T., Steinbuch, M., & Serrarens, A. (2011). Predictive gear shift control for a parallel hybrid electric vehicle. In Proceeding of the Vehicle Power and Propulsion Conference.Google Scholar
  35. 35.
    Serrao, L., Onori, S., & Rizzoni, G. (2011). A comparative analysis of energy management strategies for hybrid electric vehicles. Journal of Dynamic Systems, Measurement and Control.Google Scholar
  36. 36.
    Kim, N., Cha, S., & Peng, H. (2011). Optimal control of hybrid electric vehicles based on Pontryagin’s principle. Transactions on Control Systems Technology.Google Scholar
  37. 37.
    Yuan, Z., Teng, L., Fengchun, S. & Peng, H. (2013). Comparative study of dynamic programming and Pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle. Energies.Google Scholar
  38. 38.
    Guzman, E., Becerra, G., Moreno, J. A., & Alvarez-Icaza, L. (2014). Controladores para motores diésel con incertidumbres paramétricas. In Proceeding of the XVI Congreso Latinoamericano de Control Automático Google Scholar
  39. 39.
    Mi, C., Masrur, M. A., Gao, D. W. (2011). Hybrid electric vehicles (p. 435). Wiley.Google Scholar
  40. 40.
    Nersesian, R. L. (2007). Energy for the 21st century: a comprehensive guide to conventional and alternative sources (p. 425). M.E. Sharpe, Inc.Google Scholar
  41. 41.
    Black, B. C., & Flarend, R. (2010). Alternative energy (p. 223). Greenwood.Google Scholar
  42. 42.
    Romero-Becerril, A. (2015). Reduccin y validacion de modelos electroquimicos de celdas de iones de litio y supercapacitores. Available via DIALOG. http://www.ptolomeo.unam.mx:8080/xmlui/handle/132.248.52.100/7307. Retrieved May 15 2016.
  43. 43.
    Becerra, G., & Alvarez-Icaza, L. (2010). Modelado y control del acoplamiento de fuentes de potencia en vehículos híbridos. In Proceeding of the reunión de otono de potencia (Electrónica y Computación). ISBN: 978-607-95476-1-5.Google Scholar
  44. 44.
    Becerra, G., & Alvarez-Icaza, L. (2011). Control del flujo de potencia en vehículos híbridos. In Proceeding of the asociación de México de control automático A. C. (AMCA). ISBN: 978-607-95508-1-3.Google Scholar
  45. 45.
    Becerra, G., Pantoja-Vazquez, A., Alvarez-Icaza, L., & Flores, I. (2013). Simulation and optimal control of hybrid electric vehicles. In Proceeding of the 25th European modeling & simulation symposium (EMSS).Google Scholar
  46. 46.
    Becerra, G., Alvarez-Icaza, L., & Pantoja-Vazquez, A. (2016). Power flow control strategies in parallel hybrid electric vehicles. Journal of Automobile Engineering.Google Scholar
  47. 47.
    Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control (p. 428). Taylor & Francis.Google Scholar
  48. 48.
    Chaturvedi, N. A., Klein, R., Christensen, J., Ahmed, J., & Kojic, A. (2010). Algorithms for advanced battery management systems. IEEE Control Systems Magazine, 49–68.Google Scholar
  49. 49.
    Romero-Becerril, A., & Alvarez-Icaza, L. (2011). Comparison of discretization methods applied to the single-particle model of lithium-ion batteries. Journal of Power Sources, 267–269.Google Scholar
  50. 50.
    Pantoja-Vazquez, A., Alvarez-Icaza, L., & Becerra, G. (2015). Virtual serial strategy for parallel hybrid electric. Journal of Automobile Engineering.Google Scholar
  51. 51.
    Kirk, D. E. (2004). Optimal control theory: An introduction. Mineola, New York: Dover Publications.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guillermo Becerra
    • 1
    Email author
  • Luis Alvarez-Icaza
    • 2
    • 3
  • Idalia Flores De La Mota
    • 2
    • 3
  • Jose Luis Mendoza-Soto
    • 4
  1. 1.CONACYT - Universidad de Quintana Roo, Boulevard Bahia s/n esq. Ignacio ComonfortChetumalMexico
  2. 2.Universidad Nacional Autónoma de MéxicoCoyoacanMexico
  3. 3.Ciudad UniversitariaCiudad de MéxicoMexico
  4. 4.CINVESTAV, Av. Instituto Politecnico Nacional 2508Gustavo A. Madero, Ciudad de MexicoMexico

Personalised recommendations