Skip to main content

Simulation and Optimization Applied to Power Flow in Hybrid Vehicles

  • Chapter
  • First Online:
Applied Simulation and Optimization 2

Abstract

This chapter describes the application of optimization to power flow in hybrid electric vehicles, first using a strategy based on bang-bang optimal control and then comparing it with Pontryagin’s alternative. The first strategy, known as the planetary gears system (PGS), focuses on satisfying the kinematic and dynamic constraints of the gears system, starting from the allocation of the electric machine power. The second uses Pontryagins minimum principle (PMP) to solve the energy management problem and decide the amount of power that the electric machine and combustion engine should provide. The approach of the PMP strategy entails three basic elements, namely: first of all, getting the demanded power to be supplemented by the drive machines; secondly, maintaining the state of charge at a level in and around a reference so as to avoid discharging and overloading the batteries and thirdly, saving on fuel. By using the above considerations, a cost function is set out that considers the power from both machines to be inputs. The simulations were performed in Matlab’s Simulink using detailed models of the elements of a hybrid diesel-electric city bus in parallel configuration. The demands are represented by driving cycles while the combustion engine and electric machine are coupled using a planetary gears system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research A, 34, 171–205.

    Google Scholar 

  2. Guzzella, L., & Sciarretta, A. (2007). Vehicle propulsion systems (Vol. 2, p. 344). Springer.

    Google Scholar 

  3. Richard, S. (1994). The history of the international energy agency (p. 453). International Energy Agency.

    Google Scholar 

  4. Galeano, E. (1971). Las venas abiertas de Amrica latina (p. 379). Ediciones la cueva.

    Google Scholar 

  5. Romo, S. (2014). Sector elctrico ante la Reforma y las energas renovables. Mxico: Morelos.

    Google Scholar 

  6. Erjavec, J. (2013). Hybrid, electric & fuel-cell vehicles (p. 428). Delmar.

    Google Scholar 

  7. MacLean, H. L., & Lave, L. B. (2003). Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science., 29, 1–69.

    Article  Google Scholar 

  8. Hodkinson, R., & Fenton, J. (2001). Lightweight electric/hybrid vehicle design (p. 280). Plant a tree.

    Google Scholar 

  9. Zhao, J., & Wang, J. (2014). Model predictive control of integrated hybrid electric powertrains coupled with aftertreament systems. In Dynamic systems and control conference.

    Google Scholar 

  10. Becerra, G. (2010). Modelado y control del acoplamiento entre fuentes de potencia de vehculos hbridos. Available via DIALOG. http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/3993/becerranu%C3%B1ez.pdf?sequence=1. Retrieved May 15, 2016.

  11. Tim, H., Stuart, B., & Guido, H. (2014). Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis. Applied Energy. 119, 314–329.

    Google Scholar 

  12. Wirasingha, S. G., Gremban, R., & Emadi, A. (2012). Source-to-wheel (STW) analysis of plug-in hybrid electric vehicles. IEEE Transactionson Smart Grid, 3, 316–331.

    Article  Google Scholar 

  13. Miller, J. M. (2010). Propulsion systems for hybrid vehicles (p. 567). IET Renewable Energy Series.

    Google Scholar 

  14. Ehsani, M., Gao, Y., & Miller, J. M. (2007). Hybrid electric vehicles: architecture and motor drives. IEEE, 95, 719–728.

    Article  Google Scholar 

  15. American-Rails: American-Rails. (2014). The Montreal locomotive works. http://www.american-rails.com. Retrieved May 06, 2016.

  16. Gmotors: American-Rails. (2014). http://www.gmotors.co.uk. Retrieved May 06, 2016

  17. Honda, Mxico: Civic Hybrid. (2013). http://www.honda.mx/civic-hybrid/. Retrieved May 06, 2016.

  18. Luk, P. C. K., & Rosario, L. C. (2006). Power and energy management of a dual-energy source electric vehicle policy implementation issues. In Power electronics and motion control conference.

    Google Scholar 

  19. Delprat, S., Paganelli, G., Guerra, T. M., Santin, J. J., Delhom, M., & Combes, E. (1999). Algorithmic optimization tool for the evaluation of HEV control strategies. In Proceeding electric vehicle symposium

    Google Scholar 

  20. Tzeng, S., Huang, K. D., & Chen, C. C. (2005). Optimization of the dual energy-integration mechanism in a parallel-type hybrid vehicle. Applied Energy, 80, 225–245.

    Article  Google Scholar 

  21. Xiong, W., Zhang, Y., & Yin, C. (2009). Optimal energy management for a series-parallel hybrid electric bus. Energy Conversion and Management, 50, 1730–1738.

    Article  Google Scholar 

  22. Yao, H., & Wang, Q. (2015). The control strategy for improving the stability of a powertrain for a compound hybrid power excavator. Journal of Automobile Engineering.

    Google Scholar 

  23. Johannesson, L., & Egardt, B. (2008). Approximate dynamic programming applied to parallel hybrid powertrains. In Proceeding of the 17th IFAC, World Congress.

    Google Scholar 

  24. Koot, M., Kessels, J. T. B. A., de Jager, B., Heemels, W. P. M. H., van den Bosch, P. P. J., & Steinbuch, M. (2005). Energy management strategies for vehicular electric power systems. Transactions on Vehicular Technology.

    Google Scholar 

  25. Paganelli, G., Guerra, T. M., Delprat, S., Santin, J-J., Delhom, M., & Combes, E. (2000). Simulation and assessment of power control strategies for a parallel hybrid car. Journal of Automobile Engineering.

    Google Scholar 

  26. Paganelli, G., Ercole, G., Brahma, A., Guezennec, Y., Rizzoni, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles.

    Google Scholar 

  27. Paganelli, G., Delprat, S., Guerra, T. M., Rimaux, J., & Santin, J. J. (2002). Equivalent consumption minimization strategy for parallel hybrid powertrains. In Proceeding of the 55th IEEE vehicular technology.

    Google Scholar 

  28. Sciarretta, A., Back, M., & Guzzella, L. (2004). Optimal control of parallel hybrid electric vehicles. Transactions on Control Systems Technology.

    Google Scholar 

  29. Delprat, S., Lauber, J., Guerra, T. M., & Rimaux, J. (2004). Control of a parallel pybrid powertrain: optimal control. Transactions on Vehicular Technology.

    Google Scholar 

  30. Musardo, C., Rizzoni, G., Sataccia, B. (2005). A-ECMS: an adaptive algoritm for hybrid electric vehicle energy management. In Proceeding of the Conference on Decision and Control.

    Google Scholar 

  31. Pisu, P., & Rizzoni, G. (2007). A comparative study of supervisory control strategies for hybrid electric vehicles. Transactions on Control Systems Technology.

    Google Scholar 

  32. Borhan, H. A., Vahidi, A., Phillips, A. M., Kuang, M. L., & Kolmanovsky, I. V. (2009). Predictive energy management of a power-split hybrid electric vehicle. In Proceeding of the American Control Conference

    Google Scholar 

  33. Yan, F., Wang, J., & Huang, K. (2012). Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics. Transactions on Vehicular Technology.

    Google Scholar 

  34. Ngo, V., Hofman, T., Steinbuch, M., & Serrarens, A. (2011). Predictive gear shift control for a parallel hybrid electric vehicle. In Proceeding of the Vehicle Power and Propulsion Conference.

    Google Scholar 

  35. Serrao, L., Onori, S., & Rizzoni, G. (2011). A comparative analysis of energy management strategies for hybrid electric vehicles. Journal of Dynamic Systems, Measurement and Control.

    Google Scholar 

  36. Kim, N., Cha, S., & Peng, H. (2011). Optimal control of hybrid electric vehicles based on Pontryagin’s principle. Transactions on Control Systems Technology.

    Google Scholar 

  37. Yuan, Z., Teng, L., Fengchun, S. & Peng, H. (2013). Comparative study of dynamic programming and Pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle. Energies.

    Google Scholar 

  38. Guzman, E., Becerra, G., Moreno, J. A., & Alvarez-Icaza, L. (2014). Controladores para motores diésel con incertidumbres paramétricas. In Proceeding of the XVI Congreso Latinoamericano de Control Automático

    Google Scholar 

  39. Mi, C., Masrur, M. A., Gao, D. W. (2011). Hybrid electric vehicles (p. 435). Wiley.

    Google Scholar 

  40. Nersesian, R. L. (2007). Energy for the 21st century: a comprehensive guide to conventional and alternative sources (p. 425). M.E. Sharpe, Inc.

    Google Scholar 

  41. Black, B. C., & Flarend, R. (2010). Alternative energy (p. 223). Greenwood.

    Google Scholar 

  42. Romero-Becerril, A. (2015). Reduccin y validacion de modelos electroquimicos de celdas de iones de litio y supercapacitores. Available via DIALOG. http://www.ptolomeo.unam.mx:8080/xmlui/handle/132.248.52.100/7307. Retrieved May 15 2016.

  43. Becerra, G., & Alvarez-Icaza, L. (2010). Modelado y control del acoplamiento de fuentes de potencia en vehículos híbridos. In Proceeding of the reunión de otono de potencia (Electrónica y Computación). ISBN: 978-607-95476-1-5.

    Google Scholar 

  44. Becerra, G., & Alvarez-Icaza, L. (2011). Control del flujo de potencia en vehículos híbridos. In Proceeding of the asociación de México de control automático A. C. (AMCA). ISBN: 978-607-95508-1-3.

    Google Scholar 

  45. Becerra, G., Pantoja-Vazquez, A., Alvarez-Icaza, L., & Flores, I. (2013). Simulation and optimal control of hybrid electric vehicles. In Proceeding of the 25th European modeling & simulation symposium (EMSS).

    Google Scholar 

  46. Becerra, G., Alvarez-Icaza, L., & Pantoja-Vazquez, A. (2016). Power flow control strategies in parallel hybrid electric vehicles. Journal of Automobile Engineering.

    Google Scholar 

  47. Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control (p. 428). Taylor & Francis.

    Google Scholar 

  48. Chaturvedi, N. A., Klein, R., Christensen, J., Ahmed, J., & Kojic, A. (2010). Algorithms for advanced battery management systems. IEEE Control Systems Magazine, 49–68.

    Google Scholar 

  49. Romero-Becerril, A., & Alvarez-Icaza, L. (2011). Comparison of discretization methods applied to the single-particle model of lithium-ion batteries. Journal of Power Sources, 267–269.

    Google Scholar 

  50. Pantoja-Vazquez, A., Alvarez-Icaza, L., & Becerra, G. (2015). Virtual serial strategy for parallel hybrid electric. Journal of Automobile Engineering.

    Google Scholar 

  51. Kirk, D. E. (2004). Optimal control theory: An introduction. Mineola, New York: Dover Publications.

    Google Scholar 

Download references

Acknowledgements

Authors want to thank the support to the DGAPA-UNAM PAPIIT Project 109316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Becerra, G., Alvarez-Icaza, L., Flores De La Mota, I., Mendoza-Soto, J.L. (2017). Simulation and Optimization Applied to Power Flow in Hybrid Vehicles. In: Mujica Mota, M., Flores De La Mota, I. (eds) Applied Simulation and Optimization 2. Springer, Cham. https://doi.org/10.1007/978-3-319-55810-3_7

Download citation

Publish with us

Policies and ethics