Airport Ground Crew Scheduling Using Heuristics and Simulation

  • Blaž RodičEmail author
  • Alenka Baggia


International airports are complex systems that require efficient operation and coordination of all their departments. Therefore, suitable personnel and equipment scheduling solutions are vital for efficient operation of an airport as a system. Many general solutions for fleet scheduling are available; however, there is a lack of scheduling solutions for airport ground crews, especially for work groups with overlapping skills. In the presented case, a scheduling solution for airport ground crew and equipment in a small international airport is described. As analytical methods are unsuitable for the system in question, the proposed scheduling solution is based on heuristics. A combined agent based and discrete event simulation model was developed to validate and improve the heuristic algorithms until they produced acceptable schedules and shifts. The algorithms first compute the requirements for workforce and equipment based on flight schedules and stored heuristic criteria. Workforce requirements are then optimized using time shifting of tasks and task reassignments, which smooth the peaks in workforce requirements, and finally the simulation model is used to verify the generated schedule. The scheduling procedure is considerably faster than manual scheduling and allows dynamic rescheduling in case of disruptions. The presented schedule generation and optimization solution is flexible and adaptable to other similar sized airports.


Schedule Problem Agent Base Modelling Discrete Event Simulation Skill Group Delay Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bian, F., Burke, E., Jain, S., & Kendall, G. (2005). Measuring the robustness of airline fleet schedules. In G. Kendal, E. Burke, S. Petrovic, & M. Gendreau (Eds.), Multidisciplinary scheduling theory and applications (pp. 381–392). New York: Springer Science + Business Media.CrossRefGoogle Scholar
  2. 2.
    El Moudani, W., & Mora-Camino, F. (2000). A dynamic approach for aircraft assignment and maintenance scheduling by airlines. The Journal of Air Transport Management, 6, 233–237. doi: 10.1016/S0969-6997(00)00011-9.CrossRefGoogle Scholar
  3. 3.
    Yan, S., Tang, C. H., & Fu, T. C. (2008). An airline scheduling model and solution algorithms under stochastic demands. European Journal of Operational Research, 190, 22–39. doi: 10.1016/j.ejor.2007.05.053.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gurtner, G., Bongiorno, C., Ducci, M., & Miccichè, S. (2016). An empirically grounded agent based simulator for the air traffic management in the SESAR scenario.Google Scholar
  5. 5.
    Clausen, T. (2011). Airport ground staff scheduling.Google Scholar
  6. 6.
    Løve, M., Sørensen, K. R., Larsen, J., & Clausen, J. (2002). Applications of evolutionary computing. In S. Cagnoni, J. Gottlieb, E. Hart, et al. (Eds.), EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN Kinsale, Ireland, April 3–4, 2002 Proceedings (pp. 315–324). Berlin: Springer.Google Scholar
  7. 7.
    Tavakkoli-Moghaddam, R., Yaghoubi-Panah, M., & Radmehr, F. (2012). Scheduling the sequence of aircraft landings for a single runway using a fuzzy programming approach. The Journal of Air Transport Management, 25, 15–18. doi: 10.1016/j.jairtraman.2012.03.004.CrossRefGoogle Scholar
  8. 8.
    García Ansola, P., García Higuera, A., Pastor, J. M., & Otamendi, F. J. (2011). Agent-based decision-making process in airport ground handling management. Logistics Research, 3, 133–143. doi: 10.1007/s12159-011-0052-y.CrossRefGoogle Scholar
  9. 9.
    De Bruecker, P., den Bergh, J., Belien, J., & Demeulemeester, E. (2014). A two-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance. In International Conference on Operations Research. Google Scholar
  10. 10.
    Burke, E. K., De Causmaecker, P., De Maere, G., et al. (2010). A multi-objective approach for robust airline scheduling. Computers & Operations Research, 37, 822–832. doi: 10.1016/j.cor.2009.03.026.CrossRefzbMATHGoogle Scholar
  11. 11.
    European Organisation for the Safety of Air Navigation. (2015). Standard Inputs for EUROCONTROL Cost-Benefit Analyses. Brussels.Google Scholar
  12. 12.
    Weiszer, M., Chen, J., & Stewart, P. (2015). Preference-based evolutionary algorithm for airport runway scheduling and ground movement optimisation. In IEEE Conference on Intelligent Transportation Systems Proceedings, ITSC 2015–Octob:2078–2083. doi: 10.1109/ITSC.2015.336.
  13. 13.
    Lin, D., Xin, Z., Huang, Y. (2015). Ground crew rostering for the airport check-in counter. In 2015 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 2–6). Singapore.Google Scholar
  14. 14.
    Bazargan, M. (2004). Airline operations and scheduling. Aldershot: Ashgate Publishing Limited.Google Scholar
  15. 15.
    Stolletz, R. (2010). Operational workforce planning for check-in counters at airports. Transportation Research Part E Logistics and Transportation Review, 46, 414–425. doi: 10.1016/j.tre.2009.11.008.CrossRefGoogle Scholar
  16. 16.
    Chu, S. C. K. (2007). Generating, scheduling and rostering of shift crew-duties: Applications at the Hong Kong International Airport. European Journal of Operational Research, 177, 1764–1778. doi: 10.1016/j.ejor.2005.10.008.CrossRefzbMATHGoogle Scholar
  17. 17.
    Abdoul Soukour, A., Devendeville, L., Lucet, C., & Moukrim, A. (2013). A memetic algorithm for staff scheduling problem in airport security service. Expert Systems with Applications, 40, 7504–7512. doi: 10.1016/j.eswa.2013.06.073.CrossRefGoogle Scholar
  18. 18.
    Bennell, J. A., Mesgarpour, M., & Potts, C. N. (2011). Airport runway scheduling. 4OR, 9, 115–138. doi: 10.1007/s10288-011-0172-x.
  19. 19.
    Soomer, M. J., & Franx, G. J. (2008). Scheduling aircraft landings using airlines’ preferences. European Journal of Operational Research, 190, 277–291. doi: 10.1016/j.ejor.2007.06.017.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Qi, X., Yang, J., & Yu, G. (2004) Scheduling problems in the airline industry. In Handbook of scheduling algorithms, models and performance analysis. Google Scholar
  21. 21.
    Herbers, J. (2005). Models and algorithms for ground staff scheduling on airports.Google Scholar
  22. 22.
    Spyropoulos, C. D. (2000). AI planning and scheduling in the medical hospital environment. Artificial Intelligence in Medicine, 20, 101–111. doi: 10.1016/S0933-3657(00)00059-2.CrossRefGoogle Scholar
  23. 23.
    Pinedo, M. L. (2012). Scheduling: Theory, algorithms, and systems. New York: Springer.Google Scholar
  24. 24.
    Leung, J. Y. T. (2004). Introduction and notation. In Handbook of scheduling algorithms, models and performance analysis. Google Scholar
  25. 25.
    Peidro, D., Díaz-Madroñero, M., & Mula, J. (2010). An interactive fuzzy multi-objective approach for operational transport planning in an automobile supply chain. WSEAS Transactions on Information Science and Applications, 7, 283–294.zbMATHGoogle Scholar
  26. 26.
    Cafuta, K., Klep, I., & Povh, J. (2012). Constrained polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, 22, 363–383. doi: 10.1137/110830733.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Castillo, I., Joro, T., & Li, Y. Y. (2009). Workforce scheduling with multiple objectives. European Journal of Operational Research, 196, 162–170. doi: 10.1016/j.ejor.2008.02.038.CrossRefzbMATHGoogle Scholar
  28. 28.
    Kleinman, N. L., Hill, S. D., & Ilenda, V. A. (1998). Simulation optimization of air traffic delay cost. In Proceedings of the 1998 Winter Simulation Conference (pp. 1177–1181). Washington DC.Google Scholar
  29. 29.
    Boysen, N., & Fliedner, M. (2011). Scheduling aircraft landings to balance workload of ground staff. Computer and Industrial Engineering, 60, 206–217. doi: 10.1016/j.cie.2010.11.002.CrossRefGoogle Scholar
  30. 30.
    Piera Eroles, M. À., Ramos, J. J., & Fernandez Robayna, E. (2009). Airport logistics operations. In Y. Merkuryev, G. Merkuryeva, À. M. Piera, & A. Guasch (Eds.), Simulation-based case studies in logistics education and applied research (pp. 209–228). London: Springer. doi: 10.1007/978-1-84882-187-3_12.
  31. 31.
    Bouarfa, S., Blom, H., & Curran, R. (2016). Agent-based modeling and simulation of coordination by airline operations control. IEEE Transactions on Emerging Topics in Computing, 4, 1–1. doi: 10.1109/TETC.2015.2439633.CrossRefGoogle Scholar
  32. 32.
    Peng, Y., Wei, G., Junqing, S., & Bin, S. (2014). Evaluation of airport capacity through agent based simulation. International Journal of Grid and Distributed Computing, 7, 165–174.CrossRefGoogle Scholar
  33. 33.
    Sabar, M., Montreuil, B., & Frayret, J. M. (2012). An agent-based algorithm for personnel shift-scheduling and rescheduling in flexible assembly lines. Journal of Intelligent Manufacturing, 23, 2623–2634. doi: 10.1007/s10845-011-0582-9.CrossRefGoogle Scholar
  34. 34.
    Rodič, B., & Baggia, A. (2013). Dynamic airport ground crew scheduling using a heuristic scheduling algorithm. International Journal of Applied Mathematics and Informatics, 7, 153–163.Google Scholar
  35. 35.
    Baggia, A., Leskovar, R., & Kljajić, M. (2008). Implementation of the scheduling domain description model. Organizacija, 41, 226–232. doi: 10.2478/v10051-008-0024-4.CrossRefGoogle Scholar
  36. 36.
    Weiszer, M., Chen, J., & Locatelli, G. (2014). An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector. Applied Energy, 157, 567–582. doi: 10.1016/j.apenergy.2015.04.039.CrossRefGoogle Scholar
  37. 37.
    Kofjač, D., & Kljajic, M. (2008). Application of genetic algorithms and visual simulation in a real-case production optimization. WSEAS Transactions on Systems and Control, 3, 992–1001.Google Scholar
  38. 38.
    Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.Google Scholar
  39. 39.
    Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Management. doi: 10.1108/13673270210417646.Google Scholar
  40. 40.
    Stewart, R. (2004). Simulation: the practice of model development and use, 2nd ed. Journal of Simulation. doi: 10.1057/palgrave.jos.4250031.Google Scholar
  41. 41.
    Gilbert, N. (2007). Agent-based models. In Agent-based model (Quantitative applications in the social sciences) (pp. 1–20). doi: 10.1146/annurev-polisci-080812-191558.
  42. 42.
    Borshchev, A. (2013). The big book of simulation modeling. AnyLogic North America.Google Scholar
  43. 43.
    Siebers, P. O., Macal, C. M., Garnett, J., et al. (2010). Discrete-event simulation is dead, long live agent-based simulation! Journal of Simulation, 4, 204–210. doi: 10.1057/jos.2010.14.CrossRefGoogle Scholar
  44. 44.
    Brucker, P., Qu, R., & Burke, E. (2011). Personnel scheduling: Models and complexity. European Journal of Operational Research, 210, 467–473. doi: 10.1016/j.ejor.2010.11.017.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Reinertsen, D. G. (2012). The principles of product development flow: Second generation lean product development, kindle. Redondo Beach: Celeritas Publishing.Google Scholar
  46. 46.
    Awad, M. S. (2009). Allocate the right aircraft capacity. In 13th Air Transport Research Society World Conference.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Information StudiesNovo mestoSlovenia
  2. 2.Faculty of Organizational SciencesUniversity of MariborKranjSlovenia

Personalised recommendations