Simulation-Optimization of the Mexico City Public Transportation Network: A Complex Network Analysis Framework

  • Idalia Flores De La MotaEmail author
  • Aída Huerta-Barrientos


The urban transport mobility is one of the most important problems for the cities, and involves many aspects that concern to citizens, governments and the economical growth of the countries. Mobility in Mexico City is also a huge problem since the city size makes it insoluble and citizens prefer to use private transportation instead of the public transport network because it offers a poor coverage and a lack of modal transfer centers. With the purpose of analyzing the mobility problems in Mexico City as well as detecting areas of opportunity, the objective of this chapter is to model and simulate the public transportation network from the complex network perspective to asses network structural vulnerability and resilience, considering mobility and accessibility aspects. Firstly, we analyze the urban transport infrastructure in Mexico City taking into account the planning process and sustainability criteria. Secondly, we model and simulate the Mexico City’s public transportation network as a complex network. Thirdly, we characterize the complex network topology of the Mexico City’s public transportation network, and finally we present the main results.


Urban mobility Optimization-simulation Synthetic microanalysis Mexico City 



This research was supported by UNAM-PAPIIT grant IT102117.


  1. 1.
    Alminas, M., Vasiliauskas, A. V., & Jakubauskas, G. (2009). The impact of transport on the competitiveness of national economy. Department of Transport Management, 24(2), 93–99.Google Scholar
  2. 2.
    Álvarez-Herranz, A., & Martínez-Ruíz, M. P. (2012). Evaluating the economic and regional impact on national transport and infrastructure policies with accessibility variables. Transport, 27(4), 414–427.CrossRefGoogle Scholar
  3. 3.
    Aschauer, D. A. (1991). Transportation spending and economic growth: The effects of transit and highway expenditures. Report. Washington, D.C.: American Transit Association.Google Scholar
  4. 4.
    Auvinet, G., Méndez, E., Juárez, M., & Rodríguez, J. F. (2013). Geotechnical risks affecting housing projects in Mexico valley. México: Sociedad Mexicana de Mecánica de Suelos.Google Scholar
  5. 5.
    Bagler, G. (2008). Analysis of the airport network of India as a complex weighted network. Physica A: Statistical Mechanics and its Applications, 387(12), 2972–2980.CrossRefGoogle Scholar
  6. 6.
    Balaker, T. (2006). Do economists reach a conclusion on rail transit? Econ Journal Watch, 3(3), 551.Google Scholar
  7. 7.
    Bell, S., & Morse, S. (2008). Sustainability indicators: Measuring the immeasurable (2nd ed.). London, UK: Earthscan.Google Scholar
  8. 8.
    Barabási, A., & Abert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berche, B., Ferber, C. V., Holovatch, T., & Holovatch, Y. (2012). Transportation network stability: A case study of city transit. Advances in Complex Systems, 15(supp01), 1–18.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Blondel, V. D., Guillaume, J. L., Lambiotte, R., & ELefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment (10).Google Scholar
  11. 11.
    Bovy, P. H. L., Jansen, G. R. M. (1979). Travel times for disaggregate travel demand modelling: a discussion and a new travel time model. In G. R. M. Jansen, et al. (Eds.), New Developments in modelling travel demand and urban systems (pp. 129–158). Saxon House, England.Google Scholar
  12. 12.
    Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.CrossRefzbMATHGoogle Scholar
  13. 13.
    Buckwalter, D. W. (2001). Complex topology in the highway network of Hungary, 1990 and 1998. Journal of Transport Geography, 9(2), 125–135.CrossRefGoogle Scholar
  14. 14.
    CAF. (2011a). Desarrollo urbano y movilidad en América Latina and INEGI 2013.Google Scholar
  15. 15.
    CAF. (2011b). Desarrollo urbano y movilidad en América Latina. CTSEMBARQ México, Based on 2007 mobility survey. Estadísticas SETRAVI. Fideicomiso para el mejoramiento de lasvías de DF. 2001. Secretaría del MedioAmbiente. 2008. Inventario de emisiones de la ZMVM, 2006.Google Scholar
  16. 16.
    Calderón, C., & Servén, L. (2008). Infrastructure and economic development in Sub-Saharan Africa. The World Bank Policy Research Working Paper, 4712.Google Scholar
  17. 17.
    Caschili, S., & De Montis, A. (2013). Accessibility and complex network analysis of the US commuting system. Cities, 30, 4–17.CrossRefGoogle Scholar
  18. 18.
    Cervero, R. (2001). Walk-and-ride: Factors influencing pedestrian access to transit. Journal of Public Transportation, 3(4), 1–23.MathSciNetGoogle Scholar
  19. 19.
    Cherven, K. (2015). Mastering Gephi network visualization. Birmingham: Packt Publishing.Google Scholar
  20. 20.
    Cheung, D. P., & Gunes, M. H. (2012). A complex network analysis of the United States air transportation. In Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 26–29 August 2012 (pp. 699–701). Istanbul, Turkey: Kadir Has University 2012.Google Scholar
  21. 21.
    Criado, R., & Romance, M. (2012). Optimization and its applications. In M. T. Thai & P. M. Pardalos (eds.), Handbook of optimization in complex networks: Communication and social networks (Vol. 58). Springer. doi: 10.1007/978-1-4614-0857-41.
  22. 22.
    Demeester, P., & Michael, G. (1999). Resilience in multilayer networks. IEEE Communications Magazine, 0163-6804/99.Google Scholar
  23. 23.
    De Rus, G. (2008). The economic effects of high speed rail investment. University of Las Palmas, Spain, Discussion Paper, 2008-16.Google Scholar
  24. 24.
    Dey, P., & Roy, S. (2016). A comparative analysis of different social network parameters derived from Facebook profiles. In S. C. Satapathy, et al. (Eds.), Proceedings of the Second International conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing (Vol. 379).Google Scholar
  25. 25.
    Flores I., Mújica, M., & Hernández, S. (2015). Urban transport infrastructure: A survey. In EMSS 2015 Proceedings, Bergeggi, Italy.Google Scholar
  26. 26.
    Floater, G., & Rode, P. (2014). Cities and the new climate economy: the transformative role of global urban growth. In The new climate economy: The transformative role of global urban growth, November 2014.
  27. 27.
    Fortunato, S., & Castellano, C. (2007). Community structure in graphs. arXiv:0712.2716.
  28. 28.
    Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software—Practice & Experience, 21(11), 1129–1164.Google Scholar
  29. 29.
    Galloti, R., & Barthelemy, M. (2014). Anatomy and efficiency of urban multimodal mobility. Scientific Reports, 4, 6911. doi: 10.1038/srep06911.
  30. 30.
    Grünberger, S., & Omann, I. (2011). Quality of life and sustainability. Links between sustainable behaviour, social capital and well-being. In 9th Biennial Conference of the European Society for Ecological Economics (ESEE): “Advancing Sustainability in a Time of Crisis” from 14th to 17th June 2011, Istanbul, Turkey.Google Scholar
  31. 31.
    HABITAT. (2015). Reporte Nacional de la Movilidad Urbana en México 2014–2015.
  32. 32.
    Hage, P., & Harary, F. (1995). Eccentricity and centrality in networks. Social Networks, 17(1), 57–63.CrossRefGoogle Scholar
  33. 33.
    Háznagy, A., Fi, I., London, A., & Tamas, N. (2015) Complex network analysis of public transportation networks: A comprehensive study. In 2015 Models and Technologies for Intelligent Transportation Systems (MT-ITS), 3–5 June 2015. Budapest, Hungary.Google Scholar
  34. 34.
    Hu, Y. F. (2005). Efficient and high quality force-directed graph drawing. The Mathematica Journal, 10, 37–71.Google Scholar
  35. 35.
    Johnston, R. A. (2004). The urban transportation planning process. In S. Hansen, & G. Guliano (Eds.), The Geography of Urban Transportation. Multi-modal transportation planning (pp. 115–138). The Guilford Press.Google Scholar
  36. 36.
    Kivelä, M., et al. (2014). Multilayer networks. Journal of Complex Networks, 2, 203–271.Google Scholar
  37. 37.
    Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kobourov, S. G. (2012). Force-directed drawing algorithms. In Handbook of graph drawing and visualization. CRC Press.Google Scholar
  39. 39.
    Krygsman, S., Dijsta, M., & Arentze, T. (2004). Multimodal public transport: An analysis of travel time elements and the interconnectivity ratio. Transport Policy, 11(2004), 265–275.CrossRefGoogle Scholar
  40. 40.
    Latapy, M. (2008). Main-memory triangle computations for very large (Sparse (Power-Law)) graphs. Theoretical Computer Science (TCS), 407(1–3), 458–473.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Levy, J. M. (2011). Contemporary urban planning. Boston: Longman.Google Scholar
  42. 42.
    Lin, J., & Ban, Y. (2013). Complex network topology of transportation systems. Transport Reviews, 33(6), 658–685. doi: 10.1080/01441647.2013.848955.CrossRefGoogle Scholar
  43. 43.
    Litman, T. (2011). Measuring transportation traffic, mobility and accessibility. Victoria Transport Policy Institute.,
  44. 44.
    Martin, F., & Boyack, K. (2011). OpenOrd: An open-source toolbox for large graph layout. In Proceedings of SPIE—The International Society for Optical Engineering, January 2011.Google Scholar
  45. 45.
    Murray, A. T. (2001). Strategic analysis of public transport coverage. Socio-Economic Planning Sciences, 35, 175–188.CrossRefGoogle Scholar
  46. 46.
    Nenseth, V., & Nielsen, G. (2009). Indicators for sustainable urban transport—state of the art. TØI report 1029/2009.Google Scholar
  47. 47.
    Ortúzar, J.d.D., Willumsen, L.G., 2002. Modelling Transport, third ed, Wiley, West Sussex, England.Google Scholar
  48. 48.
    O’Sullivan, S., & Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record, 1538.Google Scholar
  49. 49.
    Paz, A., Maheshwari, P., Kachroo, P., & Ahmad, S. (2013). Estimation of performance indices for the planning of sustainable transportation systems. Hindawi Publishing Corporation. Advances in Fuzzy Systems, 2013, Article ID 601468, 13 pp.Google Scholar
  50. 50.
    Puente, S. (1999). Social vulnerability to disasters in Mexico City: An assessment method. In J. K. Mitchell (Eds.), Crucibles of hazard: Mega-cities and disasters in transition (pp. 296–297). Tokyo New York, Paris: United Nations University Press.Google Scholar
  51. 51.
    Reggiani, A., Nijkamp, P., & Lanzi, D. (2015). Transport resilience and vulnerability: The role of connectivity. Transportation Research Part A, 81, 4–15.Google Scholar
  52. 52.
    Rodrigue, J.-P., Comtois, C., & Slack, B. (2009). The geography of transport systems. New York, NY: Routledge.Google Scholar
  53. 53.
    Sienkiewicz, J., & Holyst, J. A. (2005). Statistical analyses of 22 public transport networks in Poland. Physical Review E, 72, 046127.CrossRefGoogle Scholar
  54. 54.
    Shen, B., & Gao, Z.-Y. (2008). Dynamical properties of transportation on complex networks. Physica A: Statistical Mechanics and its Applications, 387(5), 1352–1360.CrossRefGoogle Scholar
  55. 55.
    Tarapata, Z. (2015). Modelling and analysis of transportation networks using complex networks: Poland case study. The Archives of Transport, 4(36), 55–65.Google Scholar
  56. 56.
    Thai, My. T., & Pardalos, P. M. (2012). Handbook of optimization in complex networks. Springer.Google Scholar
  57. 57.
    The City of Calgary, Transportation Department. Retrieved 8 March, 2015, from
  58. 58.
    Tsay, S., & Herrmann, V. (2013). Rethinking urban mobility: Sustainable policies for the century of the city (68 pp.). Washington, DC: Carnegie Endowment for International Peace.Google Scholar
  59. 59.
    UN Documents Gathering a Body of Global Agreements. (1987). Our common future, Chapter 2. In Towards sustainable development. United Nations Decade of Education for Sustainable Development in a Creative Commons, Open Source Climate. Geneva, Switzerland, June 1987.Google Scholar
  60. 60.
    Varela, S. (2015). Urban and suburban transport in Mexico City: Lessons learned implementing BRTs lines and suburban railways for the first time. Integrated Transport Development Experiences of Global City Clusters, International Transport Forum, 2–3 July 2015, Beijing China.Google Scholar
  61. 61.
    Von Ferber, C., Holovatch, T., Holovatch, Y., & Palchykov, V. (2009). Public transport networks: Empirical analysis and modeling. The European Physical Journal B, 68(2), 261–275.CrossRefGoogle Scholar
  62. 62.
    Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  63. 63.
    Zanin, M., & Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215(1), 5–21.CrossRefGoogle Scholar
  64. 64.
    Zheng, J., Atkinson-Palombo, C., McCahill, C., O’Hara, R., & Garrick, N. W. (2011). Quantifying the economic domain of transportation sustainability. In Proceedings of the Annual Meeting of the Transportation Research Board CDROM, Washington, DC, USA.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Idalia Flores De La Mota
    • 1
    Email author
  • Aída Huerta-Barrientos
    • 1
  1. 1.Facultad de Ingeniería, Deparatmento de Ingeniería de SistemasUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations