Skip to main content

Secondary Metabolites of Endophyte Fungi: Techniques and Biotechnological Approaches

  • Chapter
  • First Online:

Abstract

Actually, special attention has been given to the exploration of new sources and new bioactive compounds. The microorganisms that inhabit specific habitats are potential source of new compounds, as the endophytes that inhabit the interior of plants without causing damage of host plant. This interaction needs the establishment of a chemical and genetic balance of the microbiome and host plant. Consequently, this interaction can generate new compounds of biotechnological interest. The problems of these studies involve the extraction, isolation, identification, and scale-up of production of specific molecules. Once these microorganisms are adapted to specific community and competition habitat, the axenic cultivation can alter the metabolism after the successive laboratory multiplication of these in artificial medium. This is one of the major problems to apply the endophytes on industrial chemical production. This chapter will discuss about the endophytic interaction with host plant, their capacity to produce bioactive compounds, and strategies to explore this potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alston TA, Porter DJ, Bright HJ (1985) The bioorganic chemistry of the nitro alkyl group. Bioorg Chem 13:375–403

    Article  CAS  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimicrobial compounds. Microbiol Res 169:483–495

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16

    Article  Google Scholar 

  • Bernardi-Wenzel J, García A, Celso-Filho JR, Prioli AJ, Pamphile JA (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res 43:375–384

    Article  PubMed  Google Scholar 

  • Bhatia DR, Dhar P, Mutalik V, Deshmukh SK, Verekar SA, Desai DC, Kshirsagarc R et al (2016) Anticancer activity of Ophiobolin A, isolated from the endophytic fungus Bipolaris setariae. Nat Prod Res 30:1455–1458

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Bongiorno VA, Rhoden SA, Garcia A, Polonio JC, Azevedo JL, Pereira JO, Pamphile JA (2016) Genetic diversity of endophytic fungi from Coffea arabica cv. IAPAR-59 in organic crops. Ann Microbiol 66:855–865

    Article  CAS  Google Scholar 

  • Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90:561–574

    Article  CAS  PubMed  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplaisb C et al (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chagas FO, Caraballo-Rodriguez AM, Pupo MT (2015) Endophytic fungi as a source of novel metabolites. In: Martín J, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Google Scholar 

  • Chagas FO, Dias LG, Pupo MT (2016) New perylenequinone derivatives from the endophytic fungus Alternaria tenuissima SS77. Tetrahedron Lett. doi:10.1016/j.tetlet.2016.06.035

    Google Scholar 

  • Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:1103–1105

    Article  CAS  PubMed  Google Scholar 

  • Crotti AEM, Vessecchi R, Lopes JLC, Lopes NP (2006) Electrospray ionization mass spectrometry: chemical processes involved in the ion formation from low molecular weight organic compounds. Quim Nova 29:287–292

    Article  CAS  Google Scholar 

  • Ding-Ling Wei SC, Lin SC, Doong ML, Jong SC (1994) Production of 3-nitropropionic acid by Arthrinium species. Curr Microbiol 28:1–5

    Article  Google Scholar 

  • Ebrahim W, El-Neketi M, Lewald LI, Orfali RS, Lin W, Rehberg N, Kalscheuer R et al (2016) Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal–Bacterial Mixed Cultures. J Nat Prod 79:914–922

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Flores AC, Pamphile JA, Sarragioto MH, Clemente E (2013) Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity. World J Microbiol Biotechnol 29:923–932

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148

    Article  PubMed  Google Scholar 

  • Gilbert JC, Martin SF (2015) Experimental organic chemistry: a miniscale & microscale approach. Cengage Learning, Boston, Massachusetts, USA

    Google Scholar 

  • Gloer JB (1997) Applications of fungal ecology in the search for new bioactive natural products. In: Wicklow DT, Soderstrom BE (eds) The mycota. Vol. IV. Environmental and microbial relationships. Springer, New York

    Google Scholar 

  • Griffith GS, Rayner ADM, Wildman HG (1994) Extracellular metabolites and mycelial morpho-genesis of Hypholoma fasciculare and Phlebia radiata (Hymenomycetes). Nova Hedwigia 59:311–329

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton BF, Gould DH, Gustine DL (2000) History of 3-nitropropionic acid. In: Mitochondrial inhibitors and neurodegenerative disorders. Humana Press, New York

    Google Scholar 

  • Hershenhorn J, Vurro M, Zonn MC, Stierle A, Strobel G (1993) Septoria cirsii, a potential biocontrol agent of Canada thistle and its phytotoxin—b-nitropropionic acid. Plant Sci 94:227–234

    Article  CAS  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 21:541–546

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J App Microbiol 107:1019–1030

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014a) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014b) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311

    Article  CAS  PubMed  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    Article  CAS  PubMed  Google Scholar 

  • Liangsakul J, Srisurichan S, Pornpakakul S (2016) Anthraquinone–steroids, evanthrasterol A and B, and a meroterpenoid, emericellic acid, from endophytic fungus, Emericella variecolor. Steroids 106:78–85

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    Article  PubMed  Google Scholar 

  • Luo SL, Dang LZ, Li JF, Zou CG, Zhang KQ, Li GH (2013) Biotransformation of saponins by endophytes isolated from Panax notoginseng. Chem Biodivers 10:2021–2031

    Article  CAS  PubMed  Google Scholar 

  • Mayo DW, Pike RM, Forbes DC (2010) Microscale organic laboratory: with multistep and multiscale syntheses, 5th edn. Wiley, New York

    Google Scholar 

  • Meng X, Mao Z, Lou J, Xu L, Zhong L, Peng Y, Zhou L et al (2012) Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities. Molecules 17:11303–11314

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Mishra RR, Tiwari M, Shukla P, Singh A, Shukla HS (2014) Implication of endophytic metabolite and their derivatives in cancer chemotherapy: a prospective study. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, India

    Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Ola AR, Thomy D, Lai D, Brötz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099

    Article  CAS  PubMed  Google Scholar 

  • Orth R (1977) Mycotoxins of Aspergillus oryzae strains for use in the food industry as starters and enzyme producing molds. Ann Nutr Aliment 31:617–624

    CAS  PubMed  Google Scholar 

  • Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays. L). World J Microbiol Biotechnol 18:391–396

    Article  CAS  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Pathania AS, Guru SK, Ashraf NU, Riyaz-Ul-Hassan S, Ali A, Tasduq SA et al (2015) A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells. Eur J Pharmacol 765:75–85

    Article  CAS  PubMed  Google Scholar 

  • Pereira P, Ibáñez SG, Agostini E, Etcheverry M (2011) Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Appl Soil Ecol 51:52–59

    Article  Google Scholar 

  • Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19–25

    Article  CAS  PubMed  Google Scholar 

  • Polonio JC, Ribeiro MAS, Rhoden SA, Sarragiotto MH, Azevedo JL, Pamphile JA (2016) 3-Nitropropionic acid production by the endophytic Diaporthe citri: molecular taxonomy, chemical characterization, and quantification under pH variation. Fungal Biol. doi:10.1016/j.funbio.2016.08.006

    PubMed  Google Scholar 

  • Price P (1991) Standard definitions of terms relating to mass spectrometry. A report from the Committee on Measurements and Standards of the American Society for mass Spectrometry. J Am Soc Mass Spectrom 2:336–348

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Rhoden SA, Garcia A, Azevedo JL, Pamphile JA (2013) In silico analysis of diverse endophytic fungi by using ITS1-5, 8S-ITS2 sequences with isolates from various plant families in Brazil. Gen Mol Res 12:935–950

    Article  CAS  Google Scholar 

  • Rico-Gray V (2001) Interspecific interaction. eLS. doi:10.1038/npg.els.0003280

    Google Scholar 

  • Ridout CJ, Coley-Smith JR, Lynch JM (1988) Fractionation of extracellular enzymes from mycoparasitic strain of Trichoderma harzianum. Enzym Microb Technol 10:180–187

    Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Article  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Sandland GJ, Rodgers JK, Minchella DJ (2007) Interspecific antagonism and virulence in hosts ex-posed to two parasite species. J Invertebr Pathol 96:43–47

    Article  PubMed  Google Scholar 

  • Santos LS, Oliveira MN, Guilhon GMSP, Santos AS, Ferreira ICS, Lopes-Júnior ML, Arruda MSP et al (2008) Herbicide potential of the biomass and chemical compounds produced by the fungus Pestalotiopsis guepinii. Planta Daninha 26:539–548

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed-borne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Misiek M, Hoffmeister D (2008) In vivo and in vitro production options for fungal secondary metabolites. Mol Pharmcol 5:234–242

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Soldati G, Smith A, inventors; Uniroyal Chemical Co Inc., assignee (1974) 3-nitropropionic acid derivatives. US Patent No 3,786,092

    Google Scholar 

  • Soliman SS, Raizada MN (2013) Interactions between co-habitating fungi elicit synthesis of Taxol from an endophytic fungus in host Taxus plants. Front Microbiol. doi:10.3389/fmicb.2013.00003

    PubMed  PubMed Central  Google Scholar 

  • Somanthan R, Rivero IA, Beltran RG (1990) Nitropropanoic acid from five Astragalus species. Rev Latinoamer Quim 21:101–107

    CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Strange RN (2007) Phytotoxins produced by microbial plant pathogens. Nat Prod Rep 24:127–144

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-κB activity. Bioorg Med Chem 21:3850–3858

    Article  CAS  PubMed  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2012) Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol Control 61:155–159

    Article  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR et al (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104:10376–10381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Biores Technol 188:251–257

    Article  CAS  Google Scholar 

  • Vessecchi R, Lopes NP, Gozzo FC, Dorr FA, Murgu M, Lebre DT, Abreu R et al (2011) Mass spectrometry nomenclature in portuguese language. Quim Nova 34:1875–1887

    Article  CAS  Google Scholar 

  • Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    Article  CAS  PubMed  Google Scholar 

  • Wang FW, Yong HY, Chen JR, Wang XT, Zhu HL, Song YC, Tan RX (2006) Neoplaether, a new cytotoxic and antifungal endophyte metabolite from Neoplaconema napellum IFB-E016. FEMS Microbiol Lett 261:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Sun ZH, Chen YC, Liu HX, Li HH, Tan GH, Li SN, Guo XL, Zhang WM (2016) Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia 110:77–82

    Article  CAS  PubMed  Google Scholar 

  • Warth B, Parich A, Atehnkeng J, Bandyopadhyay R, Schuhmacher R, Sulyok M, Krska R (2012) Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J Agric Food Chem 60:9352–9363

    Article  CAS  PubMed  Google Scholar 

  • Weber RWS, Kappe R, Paululat T, Mosker E, Anke H (2007) Anti-Candida metabolites from endophytic fungi. Phytochemistry 68:886–982

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K (2012) Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.) Afr J Biotechnol 11:9094

    CAS  Google Scholar 

  • Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62:3584–3590

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Gao YH, Niu DY, Yang LY, Gao XM, Du G, Hu QF (2013) Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia 91:189–193

    Article  CAS  PubMed  Google Scholar 

  • Yao ML, Liu JZ, Jin S, Jiao J, Gai QY, Wei ZF, Fu Y et al (2014) A novel biotransformation of astragalosides to astragaloside IV with the deacetylation of fungal endophyte Penicillium canescens. Process Biochem 49:807–812

    Article  CAS  Google Scholar 

  • Ye YQ, Xia CF, Yang JX, Qin Y, Zhou M, Gao XM, Du G et al (2014) Isocoumarins from the fermentation products of an endophytic fungus of Aspergillus versicolor. Phytochem Lett 10:215–218

    Article  CAS  Google Scholar 

  • Zhang W, Wei W, Shi J, Chen C, Zhao G, Jiao R, Tan R (2015) Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity. Bioorg Med Chem Lett 25:2698–2701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alencar Pamphile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pamphile, J.A., dos Santos Ribeiro, M.A., Polonio, J.C. (2017). Secondary Metabolites of Endophyte Fungi: Techniques and Biotechnological Approaches. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_9

Download citation

Publish with us

Policies and ethics