Skip to main content

Ecological Aspects on Rumen Microbiome

  • Chapter
  • First Online:
Diversity and Benefits of Microorganisms from the Tropics

Abstract

Ruminants are important as suppliers of dairy products for human consumption and are responsible by a large portion of global greenhouse gas emissions. The rumen microbial colonization is a complex process and occurs simultaneously with animal development and maturation of the host immune system. Ruminal microorganisms are responsible for converting energy stored in plant biomass into volatile fatty acid, which are subsequently metabolized and absorbed by the animal. In this chapter, we briefly describe the rumen compartment and the coevolution between ruminants and microorganisms. Further, we discuss the rumen microbiome composition, including the structure of bacterial and archaeal communities and the role of Protozoa, anaerobic fungi, and bacteriophages in the rumen. Finally, we discuss how the use of molecular tools on rumen microbiome studies has impacted on biotechnological exploitation of this ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Akin DE, Benner R (1988) Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl Environ Microbiol 54:1117–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albers SV, Konings WN, Driessen JM (2007) Solute transport. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 354–368

    Chapter  Google Scholar 

  • Alexander RM (2009) The energetics of coprophagy: a theoretical analysis. J Zool 20:629–637

    Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bach SJ, Mcallister TA, Veira DM, Gannon VPJ, Holley RA (2002) Transmission and control of Escherichia coli O157: H7 – a review. Can J Anim Sci 82:475–490

    Article  Google Scholar 

  • Balch CC (1950) Factors affecting the utilization of food by dairy cows. Br J Nutr 4:361–388

    Google Scholar 

  • Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, Yakimov MM et al (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281:22933–22942

    Article  CAS  PubMed  Google Scholar 

  • Braune R (1913) Untersuchungen uber die Wiederkauemagen vorkommenden protozoen. Arch Protistenkd 32:111–170

    Google Scholar 

  • Breitbart M, Rohwer F (2005) Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. BioTechniques 39:729–736

    Article  CAS  PubMed  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99:14250–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks MA, Harvey RM, Johnson NF, Keerley MS (2012) Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers. J Anim Sci 90:4985–4994

    Article  CAS  PubMed  Google Scholar 

  • Brul S, Stumm CK (1994) Symbionts and organelles in anaerobic protozoa and fungi. Trends Ecol Evol 9:319–324

    Article  CAS  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106:1948–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant MP, Small N, Bouma C, Robinson IM (1958) Characteristics of ruminal anaerobic celluloytic cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol 76:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Church DC (1969) Digestive physiology and nutrition of ruminants. OSU. Book Stores, Corvallis

    Google Scholar 

  • Clarke RTJ (1977) Protozoa in the rumen ecosystem. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 251–275

    Google Scholar 

  • Coleman GS (1975) The interrelationship between rumen ciliate protozoa and bacteria. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. University of New England Publishing Unit, Armidale, pp 149–164

    Google Scholar 

  • Coleman GS (1983) The cellulolytic activity of thirteen species of rumen entodiniomorphid protozoa. J Protozool 30:36A

    Article  Google Scholar 

  • Cowan DA (2000) Microbial genomes the untapped resource. Trends Biotechnol 18:14–16

    Article  CAS  PubMed  Google Scholar 

  • Crater AR, Barboza PS, Forster RJ (2007) Regulation of rumen fermentation during seasonal fluctuations in food intake of muskoxen. Comp Biochem Physiol A Mol Integr Physiol 146:233–241

    Article  PubMed  CAS  Google Scholar 

  • Czerkawski JW (1986) An introduction to rumen studies. Pergamon Press, Oxford/New York

    Google Scholar 

  • Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK (2011) D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 77:6722–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Tian Y, Li J, Luo Y, Liu D, Zheng H, Wang J, Dong Z, Hu S, Huang L (2015) Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 81:1375–1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, Henrissat B et al (2014) Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9:e99221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dehority BA (2003) Rumen microbiology. Nottingham University Press, Nottingham

    Google Scholar 

  • Dehority BA (2005) Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. J Eukaryot Microbiol 52:339–342

    Article  PubMed  Google Scholar 

  • de Menezes AB, Lewis E, O’Donovan M, O’Neill B, Clipson N, Doyle EM (2011) Microbiome analysis of dairy cows fed pasture or total mixed rations. FEMS Microbiol Ecol 78:256–265

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M et al (2008) Functional metagenomics profiling of nine biomes. Nature 452:1–6

    Article  CAS  Google Scholar 

  • Dittmann MT, Runge U, Lang RA, Moser D, Galeffi C, Kreuzer M, Clauss M (2014) Methane emissions by camelids. PLoS One 9:e94363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256

    Article  CAS  PubMed  Google Scholar 

  • Dubos R (1966) The microbiota of the gastrointestinal tract. Gastroenterology 51:868–874

    CAS  PubMed  Google Scholar 

  • Egert M, de Graaf AA, Smidt H, de Vos WM, Venema K (2006) Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 14:86–91

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VAPMD, Strompl C et al (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 288–314

    Chapter  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findley SD, Mormile MR, Sommer-Hurley A, Zhang XC, Tipton P, Arnett K, Porter JH et al (2011) Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol 77:8106–8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlay BJ, Esteban G, Clarke KG, Williams AG, Embley TM, Hirt RP (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–162

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  PubMed  Google Scholar 

  • Fonty G, Gouet PH, Jouany J-P, Senaud J (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:1835–1943

    Google Scholar 

  • Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen free lambs. Appl Environ Microbiol 73:6391–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foose T (1974) In: Janis C (ed) The evolutionary strategy of the equidae and the origins of rumen and cecal digestion. Society for the Study of Evolution, St. Louis, pp 757–774

    Google Scholar 

  • Gagen EJ, Mosoni P, Denman SE, Al Jassim R, McSweeney CS, Forano E (2012) Methanogen colonization does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically. Microb Ecol 64:628–640

    Article  CAS  PubMed  Google Scholar 

  • Gao AW, Wang HR, Yang JL, Shi CX (2013) The effects of elimination of fungi on microbial population and fiber degradation in sheep rumen. Appl Mech Mater 295:224–231

    Article  CAS  Google Scholar 

  • van der Giezen M (2002) Strange fungi with even stranger insides. Mycologia 16:129–131

    Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith GW, Ozkose E, Theodorou MK, Davies DR (2009) Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbono sources. Funct Ecol 2:87–97

    Article  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K et al (2014) Anaerobic fungi (Phylum Neocallimastigomycota ): advances in understanding of their taxonomy, life cycle, ecology, role, and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    Article  CAS  PubMed  Google Scholar 

  • Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93:1320–1334

    Article  CAS  PubMed  Google Scholar 

  • Hanada S (2003) Filamentous anoxygenic phototrophs in hot springs. Microbes Environ 18:51–61

    Article  Google Scholar 

  • Heath IB, Kaminskyj SG, Bauchop T (1986) Basal body loss during fungal zoospore encystment: evidence against centriole autonomy. J Cell Sci 83:135–140

    CAS  PubMed  Google Scholar 

  • Henderson G, Cox F, Kittelmann S, Miri VH, Zethof M, Noel SJ, Waghorn GC et al (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8:e74787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:1–15

    Article  CAS  Google Scholar 

  • Hernandez-Sanabria E, Goonewardene LA, Wang Z, Zhou M, Moore SS, Guan LL (2013) Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle. PLoS One 8:e58461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischhoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S et al (2007) A higher level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Ho YW, Barr DJS (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677

    Article  Google Scholar 

  • Hodgson J (1971) The development of solid food intake in calves. The relationship between liquid and solid food intake. Anim Prod 13:593–597

    Article  Google Scholar 

  • Hofmann RR (1973) The ruminant stomach. Stomach structure and feeding habits of east African game ruminants, vol 2. East African monographs in biology, Nairobi: East African Literature Bureau

    Google Scholar 

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12:129–134

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, New York, pp 533–535

    Google Scholar 

  • Imai S (1998) Phylogenetic taxonomy of rumen ciliate protozoa based on their morphology and distribution. J Appl Anim Res 13:17–36

    Article  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7:e33306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7:1069–1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9:e85423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janis C (1976) The evolutionary strategy of the equidae and the origins of rumen and cecal digestion. Evolution 30:757–774

    Article  PubMed  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Cheng YF, Mao SY, Zhu WY (2014) Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR. BMC Microbiol 14:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joblin K, Naylor G, Odongo N, Garcia M, Viljoen G (2010) Ruminal fungi for increasing forage intake and animal productivity. In: Sustainable improvement of animal production and health. FAO, Rome, pp 129–136

    Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    Article  CAS  PubMed  Google Scholar 

  • Kamagata Y, Tamaki H (2005) Cultivation of uncultured fastidious microbes. Microbes Environ 20:85–91

    Article  Google Scholar 

  • Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E (2014) The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci 9:1–8

    Google Scholar 

  • Kempton TJ, Murray RM, Leng RA (1976) Methane production and digestability measurements in the grey kangaroo and sheep. Aust J Biol Sci 29:209–214

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Huws SA, Lee MRF, Scollan ND (2009) Dietary transformation of lipid in the rumen microbial ecosystem. Asian Australas J Anim Sci 22:1341–1350

    Article  CAS  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kleen JL, Hooijer GA, Rehage J, Noordhuizen JPTM (2003) Subacute ruminal acidosis (SASA): a review. J Vet Med A 50:406–414

    Article  CAS  Google Scholar 

  • Klieve AV, Heck GL, Prance MA (1999) Genetic homogeneity and phage susceptibility of ruminal strains of Streptococcus bovis isolated in Australia. Lett Appl Microbiol 29:108–112

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204:361–366

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Kobayashi Y (2009) Fibrolytic rumen bacteria: their ecology and functions. Asian Australas J Anim Sci 22:131–138

    Article  CAS  Google Scholar 

  • Koike S, Yoshitani S, Kobayashi Y (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause DO, Russell JB (1996) An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Appl Environ Microbiol 62:815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood, G.T, Mcsweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    Google Scholar 

  • Kumar S, Dagar SS, Puniya AK (2012) Isolation and characterization of methanogens from rumen of Murrah buffalo. Ann Microbiol 62:345–350

    Article  CAS  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK, Upadhyay RC (2013a) Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Res Vet Sci 94:263–268

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Sirohi SK, Upadhyay RC, Puniya AK (2013b) Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann Microbiol 63:541–545

    Article  CAS  Google Scholar 

  • Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6:1–10

    Google Scholar 

  • Kung LJ, Hession AO (1995) Preventing in vitro lactic acid accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J Anim Sci 73:250–256

    Article  CAS  PubMed  Google Scholar 

  • Lambie SC, Kelly WJ, Leahy SC, Li D, Reilly K, McAllister TA, Valle ER et al (2015) The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci 10:1–8

    Article  Google Scholar 

  • Lange M, Westermann P, Ahring BK (2005) Archaea in protozoa and metazoan. Appl Microbiol Biotechnol 66:465–474

    Article  CAS  PubMed  Google Scholar 

  • Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D et al (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leahy SC, Kelly WJ, Li D, Li Y, Alterman E, Lambie SC, Cox F, Attwood GT (2013) The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Rhee MS, Kumar S, Lee GH, Chang DH, Kim DS, Choi SH et al (2013) Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1:e00002–e00013

    PubMed  PubMed Central  Google Scholar 

  • Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107:1924–1934

    Article  CAS  PubMed  Google Scholar 

  • Liebetanz E (1910) Die parasitischen Protozoen des Widenkauermagens. Arch Protistenkd 19:19–80

    Google Scholar 

  • Lima FS, Oikonomou G, Lima SF, Bicalho MLS, Ganda EK, Filho JCO, Lorenzo G et al (2014) Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl Environ Microbiol 81:1327–1337

    Article  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang J, Bu D, Zhao S, McSweeney C, Yu P, Li D (2009) Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 385:605–611

    Article  CAS  PubMed  Google Scholar 

  • Lopes LD, Lima AOS, Taketani RG, Darias P, Silva LRF, Romagnoli EM, Louvandini H et al (2015) Exploring the sheep rumen microbiome for carbohydrate active enzymes. Antonie Van Leeuwenhoek 108:15–30

    Article  CAS  PubMed  Google Scholar 

  • Mackie RI, Gilchrist FMC, Robberts AM, Hannah PE, Schwartz HM (1978) Microbiological and chemical changes in the rumen during the step wise adaptation of sheep to high concentrate diets. J Agric Sci 90:241–254

    Article  CAS  Google Scholar 

  • Mackie RI, Aminov RI, White BA, McSweeney CS (2000) Molecular ecology and diversity in gut microbial ecosystems. In: Cronjé PB (ed) Ruminant physiology: digestion, metabolism, growth and reproduction. CAB International, London, pp 61–77

    Chapter  Google Scholar 

  • Malmuthuge N, Li M, Chen Y, Fries P, Griebel PJ, Baurhoo B, Zhao X, Guan LL (2012) Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens. FEMS Microbiol Ecol 79:337–347

    Article  CAS  PubMed  Google Scholar 

  • Mann NH (2005) The third age of phage. PLoS Biol 3:182

    Article  CAS  Google Scholar 

  • Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, Mcnulty NP, Wadeabbott DW et al (2011) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9:e1001221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Math RK, Islam SMA, Cho KM, Hong SJ, Kim JM, Yun MG, Cho JJ, Heo JY, Lee YH, Kim H, Yun HD (2010) Isolation of a novel gene encoding a 3,5,6-trichloro-2- pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21:565–573

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Ogata K, Tajima K, Nakamura M, Nagamine T, Aminov RI, Benno Y (2000) Phenotypic characterization of polysaccharidases produced by four Prevotella type strains. Curr Microbiol 41:45–49

    Article  CAS  PubMed  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    Article  CAS  Google Scholar 

  • McAllister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72:3004–3018

    CAS  PubMed  Google Scholar 

  • McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinf Biol Insights 8:109–125

    Article  CAS  Google Scholar 

  • McEwan NR, Abecia L, Regensbogenova M, Adam CL, Findlay PA, Newbold CJ (2005) Rumen microbial population dynamics in response to photoperiod. Lett Appl Microbiol 41:97–101

    Article  CAS  PubMed  Google Scholar 

  • Mcleay LM, Titcheng DA (1975) Gastric, antral and fundic pouch secretion in sheep. J Physiol Lond 248:595–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSweeney CS, Blackall LL, Collins E, Conlan LL, Webb RI, Denman SE, Krause DO (2005) Enrichment, isolation and characterisation of ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia angustissima. Anim Feed Sci Technol 121:191–204

    Article  CAS  Google Scholar 

  • Miron J, Ben-Ghedalia D, Morrison M (2001) Adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309

    Article  CAS  PubMed  Google Scholar 

  • Mitsumori M, Sun W (2008) Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian Australas J Anim Sci 21:144–154

    Article  CAS  Google Scholar 

  • Mohammed R, Brink GE, Stevenson DM, Neumann AP, Beauchemin KA, Suen G (2014) Bacterial communities and volatile fatty acid profiles in the rumen of Holstein heifers fed orchard grass pasture or hay. Front Microbiol 5:689

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgavi DP, Kelly WJ, Janssen PH, Atwood GT (2013) Rumen microbial (meta) genomics and its application to ruminant production. Anim 7:184–201

    Article  CAS  Google Scholar 

  • Morrison M, Miron J (2000) Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett 185:109–115

    Article  CAS  PubMed  Google Scholar 

  • Mosoni P, Martin C, Forano E, Morgavi DP (2011) Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 89:783–791

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Mentel M, Van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraja TG, Towne G, Beharka AA (1992) Moderation of ruminal fermentation by ciliated protozoa in cattle fed a highgrain diet. Appl Environ Microbiol 58:2410–2414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold CJ, Fuente GL, Belanche A, Ramos-Morales E, NR ME (2015) The role of ciliate protozoa in the rumen. Front Microbiol 6:1–14

    Article  Google Scholar 

  • Offner A, Bach A, Sauvant D (2003) Quantitative review of in situ starch degradation in the rumen. Anim Feed Sci Technol 106:81–93

    Article  CAS  Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262

    Article  CAS  PubMed  Google Scholar 

  • Orpin CG, Mathiesen SD, Greenwood Y, Bilx AS (1985) Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol 50:144–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen.nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673

    Google Scholar 

  • Palackal N, Lyon C, Zaidi S, Luginbuhl P, Dupree P, Goubet F, Macomber J et al (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74:113–124

    Article  CAS  PubMed  Google Scholar 

  • Palmonari A, Stevenson DM, Mertens DR, Cruywagen CW, Weimer PJ (2010) pH dynamics and bacterial community composition in the rumen of lactating dairy cows. J Dairy Sci 93:279–287

    Article  CAS  PubMed  Google Scholar 

  • Parsley LC, Consuegra EJ, Thomas SJ, Bhavsar J, Land AM, Bhuiyan NN, Mazher MA et al (2010) Census of the viral metagenome within an activated sludge microbial assemblage. Appl Environ Microbiol 76:2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra A (2012) Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 184:1929–1952

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) Methanoplasmatales, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, McAllister TA (2013) Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One 8:e83424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinares-Patino CS, Ulyatt MJ, Waghorn GC, Lassey KR, Barry TN, Holmes CW, Johnson DE (2003) Methane emission by alpaca and sheep fed on Lucerne hay or grazed on pastures of perennial rye grass/white clover or birds foot tre foil. J Agric Sci 140:215–226

    Article  CAS  Google Scholar 

  • Pitta DW, Pinchak WE, Dowd SE, OStestock J, Gontcharova V, Youn E, Dorton K et al (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59:511–522

    Article  PubMed  Google Scholar 

  • Pontes DS, Lima-Bittencourt CI, Chartone-Souza E, Nascimento AMA (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. Ind Microbiol Biotechnol 34:463–473

    Article  CAS  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O et al (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428

    Article  PubMed  CAS  Google Scholar 

  • Pulido RG, Muñoz R, Lemarie P, Wittwer F, Orellana P, Waghorn GC (2009) Impact of increasing grain feeding frequency on production of dairy cows grazing pasture. Livest Sci 125:109–114

    Article  Google Scholar 

  • Qi M, Wang P, O’Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger LB et al (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen a metatranscriptomic approach. PLoS One 6:e20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  PubMed  Google Scholar 

  • Rafferty JP, Thompson JN (2016) Enciclopaedia Britannica. Available: http://global.britannica.com/science/coevolution. Accessed on 16 July

  • Ramsak A, Peterka M, Tajima K, Martin JC, Wood J, Johnston MED, Aminov RI et al (2000) Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol 33:69–79

    Article  CAS  PubMed  Google Scholar 

  • Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J et al (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    Article  PubMed  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    Article  CAS  PubMed  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  CAS  PubMed  Google Scholar 

  • Romero-Perez GA, Ominski KH, McAllister TA, Krause DO (2011) Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ Microbiol 77:258–268

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Sharon G, Atad I, Zilber-Rosenbegr I (2010) The evolution of animal and plants via symbiosis with microorganisms. Environ Microbiol Rep 2:500–506

    Article  PubMed  Google Scholar 

  • Ross EM, Petrvcki S, Moate PJ, Hayes BJ (2013) Metagenomic of rumen bacteriophage from thirteen lactating dairy cattle. BMC Microbiol 13:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1222

    Article  CAS  PubMed  Google Scholar 

  • Rustomo B, Cant JP, Fan MP, Duffield TF, Odongo NE, McBride BW (2006a) Acidogenic value of feeds. I. The relationship between the acidogenic value of feeds and in vitro ruminal pH changes. J Anim Sci 86:109–117

    CAS  Google Scholar 

  • Rustomo B, Alzahal O, Odongo NE, Duffield TD, McBride BW (2006b) Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. J Dairy Sci 89:4758–4768

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi W (2006) Yet-to-be cultural microorganism relevant to methane fermentation processes. Microbes Environ 21:1–15

    Article  Google Scholar 

  • Selinger LB, Forsberg CW, Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2:263–284

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bhat TK, Singh B (2001) Exploiting gastrointestinal microbes for livestock and industrial development. Asian Australas J Anim Sci 14:567–586

    Article  CAS  Google Scholar 

  • Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: potential biotechnological prospects. Anaerobe 14:138

    Article  CAS  PubMed  Google Scholar 

  • Singhal KK, Mohini M, Jha AK, Gupta PK (2005) Methane emission estimates from enteric fermentation in Indian livestock: dry matter intake approach. Curr Sci 88:119

    CAS  Google Scholar 

  • Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95:1135–1154

    Article  CAS  PubMed  Google Scholar 

  • Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013a) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523:161–166

    Article  CAS  PubMed  Google Scholar 

  • Sirohi SK, Choudhury PK, Puniya AK, Singh D, Dagar SS, Singh N (2013b) Ribosomal ITS1 sequence based diversity analysis of anaerobic rumen fungi in cattle fed on high fi ber diet. Ann Microbiol 63:1571–1577

    Article  CAS  Google Scholar 

  • Skene IK, Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1:321–327

    Article  CAS  PubMed  Google Scholar 

  • Skillman LC, Toovey AF, Williams AJ, Wright ADG (2006) Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol 72:200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the role of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 140–195

    Google Scholar 

  • Storm AC, Kristensen NB, Hanigan MD (2012) A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. J Dairy Sci 95:2919–2934

    Article  CAS  PubMed  Google Scholar 

  • Sundset MA, Praesteng KE, Cann IK, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438

    Article  PubMed  Google Scholar 

  • Sylvester JT, Karnati SKR, Yu ZT, Morrison M, Andfirkins JL (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134:3378–3384

    CAS  PubMed  Google Scholar 

  • Tarakanov BV (2006) The phenomenon of Bacteriophagy in the rumen of ruminants. Nauchny mir, Moscow

    Google Scholar 

  • Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci AP, Brookman JL (1996) Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Nutr Soc 55:913–926

    Article  CAS  PubMed  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe A (2008) Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Clim Chang 93:407–431

    Article  CAS  Google Scholar 

  • Troyer K (1984) Microbes, herbivory and the evolution of social behavior. J Theor Biol 106:157–169

    Article  Google Scholar 

  • Tymensen LD, Beauchemin KA, Mcallister TA (2012) Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 158:1808–1817

    Article  CAS  PubMed  Google Scholar 

  • Uyeno Y, Sekiguchi Y, Kamagata Y (2010) rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett Appl Microbiol 51:570–577

    Article  CAS  PubMed  Google Scholar 

  • Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM et al (2002) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454

    Article  CAS  PubMed  Google Scholar 

  • Wallace RJ, Cheng KJ, Dinsdale D, Orskov ER (1979) An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279:424–426

    Article  CAS  PubMed  Google Scholar 

  • Wang FC, Li F, Chen GJ, Liu WF (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–657

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z (2013) Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS One 11:e78507

    Article  CAS  Google Scholar 

  • Warner ACI (1956) Proteolysis by rumen microorganisms. J Gen Microbiol 14:749

    Article  CAS  PubMed  Google Scholar 

  • Weimer PJ (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6:1–16

    Article  Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer, New York, pp 4–83

    Google Scholar 

  • Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37:125–129

    Article  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea bacteria and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolin MJ, Miller TL (1988) Microbe-microbe interactions. In: Hobson PN (ed) The rumen microbial ecosystems. Elsevier, London, pp 343–459

    Google Scholar 

  • Wong DWS, Chan VJ, Batt SB (2008) Cloning and characterization of a novel exo-a-1,5-L-arabinanase gene and the enzyme. Appl Microbiol Biotechnol 79:941–949

    Article  CAS  PubMed  Google Scholar 

  • Wong DWS, Chan VJ, McCormack AA (2009) Functional cloning and expression of a novel endo-a-1,5-L-arabinanase from a metagenomic library. Protein Pept Lett 16:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Chan VJ, McCormack AA, Batt SB (2010) A novel xyloglucan specific endo-b-1,4-glucanase: biochemical properties and inhibition studies. Appl Microbiol Biotechnol 86:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Gordon JI (2003) Inaugural article: honor thy symbionts. Proc Natl Acad Sci U S A 100:10452–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yáñez-Ruiz DR, Abecia L, Newbold CJ (2015) Manipulating rumen microbiome and fermentation through interventions during early life. Front Microbiol 6:1–12

    Article  Google Scholar 

  • Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK et al (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Q, Yang HJ, Cao YC, Zhang DF, Jiang YH, Wang JQ (2009) Feruloyl and acetyl esterase production of an anaerobic rumen fungus Neocallimastix sp. YQ2 effected by glucose and soluble nitrogen supplementations and its potential in the hydrolysis of fibrous fetuffs. Anim Feed Sci Technol 153:263–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Romagnoli, E.M., Kmit, M.C.P., Chiaramonte, J.B., Rossmann, M., Mendes, R. (2017). Ecological Aspects on Rumen Microbiome. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_16

Download citation

Publish with us

Policies and ethics