Advertisement

Pre-scheduled Colony Size Variation in Dynamic Environments

  • Michalis Mavrovouniotis
  • Anastasia Ioannou
  • Shengxiang Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10200)

Abstract

The performance of the \(\mathcal {MAX}\)-\(\mathcal {MIN}\) ant system (\(\mathcal {MM}\)AS) in dynamic optimization problems (DOPs) is sensitive to the colony size. In particular, a large colony size may waste computational resources whereas a small colony size may restrict the searching capabilities of the algorithm. There is a trade off in the behaviour of the algorithm between the early and later stages of the optimization process. A smaller colony size leads to better performance on shorter runs whereas a larger colony size leads to better performance on longer runs. In this paper, pre-scheduling of varying the colony size of \(\mathcal {MM}\)AS is investigated in dynamic environments.

Notes

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

  1. 1.
    Angus, D., Hendtlass, T.: Ant colony optimisation applied to a dynamically changing problem. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, pp. 618–627. Springer, Heidelberg (2002). doi: 10.1007/3-540-48035-8_60CrossRefGoogle Scholar
  2. 2.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Vaerla, F., Bourgine, P. (eds.) Proceedings of the European Conference on Artificial Life, pp. 134–142. Elsevier Publishing (1991)Google Scholar
  3. 3.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Eyckelhof, C.J., Snoek, M.: Ant systems for a dynamic TSP. In: Dorigo, M., Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002). doi: 10.1007/3-540-45724-0_8CrossRefGoogle Scholar
  7. 7.
    Gambardella, L.M., Taillard, E.D., Agazzi, C.: MACS-VRPTW: a multicolony ant colony system for vehicle routing problems with time windows. In: New Ideas in Optimization, pp. 63–76 (1999)Google Scholar
  8. 8.
    Gueta, L., Chiba, R., Ota, J., Arai, T., Ueyama, T.: A practical and integrated method to optimize a manipulator-based inspection system. In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2007, pp. 1911–1918, December 2007Google Scholar
  9. 9.
    Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms applied to dynamic TSP. In: Boers, E.J.W. (ed.) EvoWorkshops 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001). doi: 10.1007/3-540-45365-2_22CrossRefGoogle Scholar
  10. 10.
    Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimization problems. In: Dorigo, M., Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002). doi: 10.1007/3-540-45724-0_10CrossRefGoogle Scholar
  11. 11.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  12. 12.
    Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z.: Benchmarking algorithms for dynamic travelling salesman problems. In: Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 1286–1292, June 2004Google Scholar
  13. 13.
    Li, C., Yang, M., Kang, L.: A new approach to solving dynamic traveling salesman problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg (2006). doi: 10.1007/11903697_31CrossRefGoogle Scholar
  14. 14.
    Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the dynamic travelling salesman problem. Soft Comput. 15(7), 1405–1425 (2011)CrossRefGoogle Scholar
  15. 15.
    Mavrovouniotis, M., Yang, S., Yao, X.: A benchmark generator for dynamic permutation-encoded problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 508–517. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32964-7_51CrossRefGoogle Scholar
  16. 16.
    Mavrovouniotis, M., Yang, S.: Adapting the pheromone evaporation rate in dynamic routing problems. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 606–615. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37192-9_61CrossRefGoogle Scholar
  17. 17.
    Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors. Appl. Soft Comput. 13(10), 4023–4037 (2013)CrossRefGoogle Scholar
  18. 18.
    Mavrovouniotis, M., Yang, S.: Empirical study on the effect of population size on max-min ant system in dynamic environments. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC 2016), pp. 853–860 (2016)Google Scholar
  19. 19.
    Melo, L., Pereira, F., Costa, E.: Multi-caste ant colony algorithm for the dynamic traveling salesperson problem. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 179–188. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37213-1_19CrossRefGoogle Scholar
  20. 20.
    Psaraftis, H.: Dynamic Vehicle Routing Problems, pp. 223–248. Elsevier (1988)Google Scholar
  21. 21.
    Simões, A., Costa, E.: CHC-based algorithms for the dynamic traveling salesman problem. In: Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 354–363. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20525-5_36CrossRefGoogle Scholar
  22. 22.
    Stützle, T., Hoos, H.: \(\cal{MAX}\)-\(\cal{MIN}\) ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation, pp. 309–314 (1997)Google Scholar
  23. 23.
    Stützle, T., Hoos, H.H.: \(\cal{MAX}\)-\(\cal{MIN}\) ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)CrossRefGoogle Scholar
  24. 24.
    Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Tinós, R., Whitley, D., Howe, A.: Use of explicit memory in the dynamic traveling salesman problem. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 999–1006. ACM, New York (2014)Google Scholar
  26. 26.
    Younes, A., Calamai, P., Basir, O.: Generalized benchmark generation for dynamic combinatorial problems. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, pp. 25–31. ACM Press (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michalis Mavrovouniotis
    • 1
  • Anastasia Ioannou
    • 2
  • Shengxiang Yang
    • 3
  1. 1.School of Science and TechnologyNottingham Trent UniversityNottinghamUK
  2. 2.Department of InformaticsUniversity of LeicesterLeicesterUK
  3. 3.Centre for Computational Intelligence (CCI), School of Computer Science and InformaticsDe Montfort UniversityLeicesterUK

Personalised recommendations