The Static and Stochastic VRP with Time Windows and both Random Customers and Reveal Times

  • Michael Saint-GuillainEmail author
  • Christine Solnon
  • Yves Deville
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10200)


Static and stochastic vehicle routing problems (SS-VRP) aim at modeling and solving real life problems by considering uncertainty on the data. In particular, customer data may not be known with certainty. Before the beginning of the day, probability distributions on customer data are used to compute a first-stage solution that optimizes an expected cost. Customer data are revealed online, while the solution is executed, and a recourse strategy is applied on the first-stage solution to quickly adapt it. Existing SS-VRP variants usually make a strong assumption on the time at which a stochastic customer reveals its data (e.g., when a vehicle arrives at the corresponding location). We introduce a new SS-VRP where customer reveal times are stochastic. We define first-stage solutions and a recourse strategy for this new problem. A key point is to introduce waiting locations that are used in the first stage-solution to wait for the realization of customer stochastic data. We show how to compute the expected cost of a first-stage solution in pseudo polynomial time, in the particular case where the vehicles are not constrained by a maximal capacity. We also introduce a local search-based approach for optimizing the first-stage solution, and introduce a scale parameter to tune the precision and cost of the expected cost computation. Experimental results on small to large instances demonstrate its efficiency and flexibility.



Christine Solnon is supported by the LABEX IMU (ANR-10-LABX-0088) of Université de Lyon, within the program “Investissements d’ Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).


  1. 1.
    Bent, R.W., Van Hentenryck, P.: Waiting and relocation strategies in online stochastic vehicle routing. In: IJCAI, pp. 1816–1821 (2007)Google Scholar
  2. 2.
    Ichoua, S., Gendreau, M., Potvin, J.Y.: Exploiting knowledge about future demands for real-time vehicle dispatching. Transp. Sci. 40(2), 211–225 (2006)CrossRefGoogle Scholar
  3. 3.
    Saint-Guillain, M., Deville, Y., Solnon, C.: A multistage stochastic programming approach to the dynamic and stochastic VRPTW. In: CPAIOR, pp. 357–374 (2015)Google Scholar
  4. 4.
    Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting strategies for dynamic vehicle routing. Transp. Sci. 39(3), 298–312 (2005)CrossRefGoogle Scholar
  5. 5.
    Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)Google Scholar
  7. 7.
    Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jezequel, A.: Probabilistic vehicle routing problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)Google Scholar
  10. 10.
    Bertsimas, D.J., Chervi, P., Peterson, M.: Computational approaches to stochastic vehicle routing problems. Transp. Sci. 29(4), 342–352 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bianchi, L., Campbell, A.M.: Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem. Eur. J. Oper. Res. 176(1), 131–144 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bowler, N.E., Fink, T.M., Ball, R.C.: Characterisation of the probabilistic travelling salesman problem. Phys. Rev. E 68(3), 036703 (2003)CrossRefGoogle Scholar
  13. 13.
    Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the probabilistic traveling salesman problem. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) International Conference on Parallel Problem Solving from Nature. LNCS, vol. 2439, pp. 883–892. Springer, Heidelberg (2002). doi: 10.1007/3-540-45712-7_85
  14. 14.
    Waters, C.D.J.: Vehicle-scheduling problems with uncertainty and omitted customers. J. Oper. Res. Soc. 40, 1099–1108 (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp. Sci. 29(2), 143–155 (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Séguin, R.: Problèmes stochastiques de tournées de vehicules, Université de Montréal (1994)Google Scholar
  17. 17.
    Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44(3), 469–477 (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gounaris, C.E., Repoussis, P.P., Tarantilis, C.D., Wiesemann, W., Floudas, C.A.: An adaptive memory programming framework for the robust capacitated vehicle routing problem. Trans. Sci. 50(4), 1239–1260 (2014)CrossRefGoogle Scholar
  19. 19.
    Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with deadlines. Transp. Sci. 42(1), 1–27 (2008)CrossRefGoogle Scholar
  20. 20.
    Henchiri, A., Bellalouna, M., Khaznaji, W.: A probabilistic traveling salesman problem: a survey. In: FedCSIS Position Papers, vol. 3, pp. 55–60, September 2014Google Scholar
  21. 21.
    Sungur, I., Ren, Y.: A model and algorithm for the courier delivery problem with uncertainty. Transp. Sci. 44(2), 193–205 (2010)CrossRefGoogle Scholar
  22. 22.
    Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge exchanges. In: Local search in combinatorial optimization, pp. 337–360 (1997)Google Scholar
  25. 25.
    Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A tabu search heuristic for the vehicle routing problem with soft time windows. Transp. Sci. 31(2), 170–186 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ahmed, S., Shapiro, A.: The sample average approximation method for stochastic programs with integer recourse (2002). Submitted for publicationGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Saint-Guillain
    • 1
    • 2
    Email author
  • Christine Solnon
    • 2
  • Yves Deville
    • 1
  1. 1.ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.LIRIS, Institut National des Sciences Appliquées de LyonVilleurbanneFrance

Personalised recommendations