Focusing Learning-Based Testing Away from Known Weaknesses

  • Christian Fleischer
  • Jörg Denzinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10200)


We present an extension to learning-based testing of systems for adversary-induced weaknesses that addresses the problem of repeated generation of known weaknesses. Our approach adds to the normally used fitness measure a component that computes the similarity of a test to known tests that revealed a weakness and uses this similarity to penalize new tests. We instantiated this idea to the testing of ad-hoc wireless networks using the IACL approach, more precisely to applications in precision agriculture, and our experiments show that our modification results in finding substantially different tests from the test(s) that we want to avoid.


  1. 1.
    McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliab. 14, 105–156 (2004)CrossRefGoogle Scholar
  2. 2.
    Baars, A.I., Lakhotia, K., Vos, T.E.J., Wegener, J.: Search-based testing, the underlying engine of future internet testing. In: Proceedings of FedCSIS 2011, pp. 917–923. IEEE Press (2011)Google Scholar
  3. 3.
    Blackadar, M., Denzinger, J.: Behavior learning-based testing of starcraft competition entries. In: Proceedings of AIIDE 2011, pp. 116–121. AAAI Press (2011)Google Scholar
  4. 4.
    Hudson, J., Denzinger, J., Kasinger, H., Bauer, B.: Efficiency testing of self-adapting systems by learning of event sequences. In: Proceedings of ADAPTIVE 2010, pp. 200–205 (2010)Google Scholar
  5. 5.
    Bergmann, K.P., Denzinger, J.: Testing of precision agricultural networks for adversary-induced problems. In: Proceedings of GECCO 2013, pp. 1421–1428. IEEE Press (2013)Google Scholar
  6. 6.
    Bergmann, K.P., Denzinger, J.: Automated testing for cyber threats to ad-hoc wireless networks. In: Proceedings of CICS 2014, pp. 34–41. IEEE Press (2014)Google Scholar
  7. 7.
    Bergmann, K.P.: Vulnerability testing in wireless ad-hoc networks using incremental adaptive corrective learning. Ph.D. thesis, Department of Computer Science, University of Calgary (2014).
  8. 8.
    Postel, J.: Internet Protocol, RFC 791 (Standard) (1981)Google Scholar
  9. 9.
    Postel, J.: User Datagram Protocol, RFC 768 (Standard) (1980)Google Scholar
  10. 10.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV) Routing, RFC 3561 (Experimental) (2003)Google Scholar
  11. 11.
    Denzinger, J., Kidney, J.: Improving migration by diversity. In: Proceedings of CEC 2003, pp. 700–707 (2003)Google Scholar
  12. 12.
    de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Proceedings of GECCO 2001, pp. 11–18 (2001)Google Scholar
  13. 13.
    Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87700-4_26CrossRefGoogle Scholar
  14. 14.
    Bueno, P.M.S., Jino, M., Wong, W.E.: Diversity oriented test data generation using metaheuristic search techniques. Inf. Sci. 259, 490–509 (2014)CrossRefGoogle Scholar
  15. 15.
    Yoo, S., Harman, M.: Test data regeneration: generating new test data from existing test data. J. Softw. Test. Verif. Reliab. 22(3), 171–201 (2012)CrossRefGoogle Scholar
  16. 16.
    Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Can a good offense be a good defense? Vulnerability testing of anomaly detectors through an artificial arms race. Soft Comput. 11(7), 4366–4383 (2011)CrossRefGoogle Scholar
  17. 17.
    Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski, S., Wehrle, K.: Kleenet: discovering insidious interaction bugs in wireless sensor networks before deployment. In: Proceedings of IPSN 2010, pp. 186–196 (2010)Google Scholar
  18. 18.
    Woehrle, M.: Search-based stress testing of wireless network protocol stacks. In: Proceedings of ICST 2012, pp. 794–803 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations