Skip to main content

NTBC and Correction of Renal Dysfunction

  • Chapter
  • First Online:
Hereditary Tyrosinemia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 959))

Abstract

Hereditary tyrosinemia type 1 (HT1) is characterized by severe progressive liver disease and renal tubular dysfunction. Kidney involvement is characterized by hypophosphatemic rickets and Fanconi syndrome. Different animal models were useful to investigate the pathophysiology of the disease and the effects of NTBC therapy on liver and kidney function. NTBC has revolutionized the prognosis of HT1 and its acute and chronic effects on renal tubular function have been proved, with normalization of tubular function within a few weeks, particularly hypophosphatemia and proteinuria. NTBC therapy is highly effective in improving renal function both at short and long-term. However, its efficacy critically depends on the age at start of treatment with normal outcome in patients diagnosed at birth by newborn screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cGFR:

Calculated glomerular filtration rate

FAA:

Fumarylacetoacetate

Fah:

Fumarylacetoacetate hydrolase

HCC:

Hepatocellular carcinoma

HGA:

Homogentisic acid

Hpd:

Hydroxyphenylpyruvate dioxygenase

HT1:

Hereditary tyrosinemia type 1

MAA:

Maleylacetoacetate

OLT:

Orthotopic liver transplantation

SA:

Succinylacetone

SAA:

Succinyl acetoacetate

TRP:

Tubular reabsorption of phosphate

References

  • Arnon R, Annunziato R, Miloh T, Wasserstein M, Sogawa H, Wilson M, Suchy F, Kerkar N (2011) Liver transplantation for hereditary tyrosinemia type I: analysis of the UNOS database. Pediatr Transplant 15:400–405

    Article  PubMed  Google Scholar 

  • Bartlett DC, Preece MA, Holme E, Lloyd C, Newsome PN, McKiernan PJ (2013) Plasma succinylacetone is persistently raised after liver transplantation in tyrosinaemia type 1. J Inherit Metab Dis 36:15–20

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN (2014) Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 37:745–752

    Article  CAS  PubMed  Google Scholar 

  • Chakrapani A, Gissen P, McKiernan P (2012) Disorders of tyrosine metabolism. In: Saudubray J-M, van den Berghe G, Walter JH (eds) Inborn metabolic diseases, 5th edn. Springer, Heidelberg, pp 275–276. Chapter 18

    Google Scholar 

  • Couce ML, Dalmau J, del Toro M, Pintos-Morell G, Aldámiz-Echevarría L, Spanish Working Group on Tyrosinemia type 1 (2011) Tyrosinemia type 1 in Spain: mutational analysis, treatment and long-term outcome. Ped Intern 53:985–989

    Article  CAS  Google Scholar 

  • de Laet C, Dionisi-Vici C, Leonard J, McKiernan P, Mitchell G, Monti L, de Baulny H, Pintos-Morell G, Spiekerkötter U (2013) Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Karaksy H, Rashed M, El-Sayed R, El-Raziky M, El-Koofy N, El-Hawary M, Al-Dirbashi O (2010) Clinical practice. NTBC therapy for tyrosinemia type 1: how much is enough? Eur J Pediatr 169(6):689–693

    Article  PubMed  Google Scholar 

  • Endo F, Kubo S, Awata H, Kiwaki K, Katoh H, Kanegae Y, Saito I, Miyazaki J, Yamamoto T, Jakobs C, Hattori S, Matsuda I (1997) Complete rescue of lethal albino c14CoS mice by null mutation of 4-hydroxyphenylpyruvate dioxygense and induction of apoptosis of hepatocytes in these mice by an in vivo retrieval of the tyrosine catabolic pathway. J Biol Chem 272:24426–24432

    Article  CAS  PubMed  Google Scholar 

  • Forget S, Patriquin HB, Dubois J, Lafortune M, Merouani A, Paradis K, Russo P (1999) The kidney in children with tyrosniemia: sonographic, CT and biochemical findings. Pediatr Radiol 29:104–108

    Article  CAS  PubMed  Google Scholar 

  • Gluecksohn-Waelsch S (1979) Genetic control of morphogenetic and biochemical differentiation: lethal albino deletion in the mouse. Cell 16:225–237

    Article  CAS  PubMed  Google Scholar 

  • Grompe M (2001) The pathophysiology and treatment of hereditary Tyrosinemia type 1. Semin Liver Dis 21:563–571

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Al Dhalimy M, Finegold M, Ou CN, Burlingame T, Kennaway NG, Soriano P (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7:2298–2307

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Lindstedt S, Al Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CA, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinemia type I. Nat Genet 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Overturf K, Al-Dhalimy M, Finegold M (1998) Therapeutic trials in the murine model of hereditary tyrosinemia type I: a progress report. J Inherit Metab Dis 21:518–531

    Article  CAS  PubMed  Google Scholar 

  • Haber BA, Chuang E, Lee V, Taub R (1996) Variable gene expression with human tyrosinemia type 1 liver may reflect region-specific dysplasia. Hepatology 24:65–71

    Article  CAS  PubMed  Google Scholar 

  • Herzog D, Martin S, Turpin S, Alvarez F (2006) Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation 8:672–677

    Article  Google Scholar 

  • Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232:42–48

    Article  CAS  PubMed  Google Scholar 

  • Jorquera R, Tanguay RM (2001) Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum Mol Genet 10:1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Kiwaki K, Awata H, Katoh H, Kanegae Y, Saito I, Yamamoto T, Miyazaki J, Matsuda I, Endo F (1997) In vivo correction with recominant adenovirus of 4-hydroxyphenylpyruvate acid dioxygenase deficiencies in train III mice. Hum Gene Ther 8:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kvittingen EA, Jellum E, Stokke O, Flatmark A, Bergan A, Sødal G, Halvorsen S, Schrumpf E, Gjone E (1986) Liver transplantation in a 23-year-old tyrosinaemia patient: effects on the renal tubular dysfunction. J Inherit Metab Dis 9:216–224

    Article  CAS  PubMed  Google Scholar 

  • Larochelle J, Alvarez F, Bussières JF, Chevalier I, Dallaire L, Dubois J, Faucher F, Fenyves D, Goodyer P, Grenier A, Holme E, Laframboise R, Lambert M, Lindstedt S, Maranda B, Melançon S, Merouani A, Mitchell J, Parizeault G, Pelletier L, Phan V, Rinaldo P, Scott CR, Scriver C, Mitchell GA (2012) Effect of nitisinone (NITISINONE) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab 107:49–54

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340:813–817

    Article  CAS  PubMed  Google Scholar 

  • Maiorana A, Malamisura M, Emma F, Boenzi S, Di Ciommo VM, Dionisi-Vici C (2014) Early effect of NTBC on renal tubular dysfunction in hereditar tyrosinemia type 1. Mol Genet Metab 113:188–193

    Article  CAS  PubMed  Google Scholar 

  • Manabe S, Sassa S, Kappas A (1985) Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. J Exp Med 162:1060–1074

    Article  CAS  PubMed  Google Scholar 

  • Masurel-Paulet A, Poggi-Bach J, Rolland MO, Bernard O, Guffon N, Dobbelaere D, Sarles J, de Baulny HO, Touati G (2008) NTBC treatment in tyrosinaemia type I: long-term outcome in French patients. J Inherit Metab Dis 31:81–87

    Article  CAS  PubMed  Google Scholar 

  • Mayorandan S, Meyer U, Gokcay G, Segarra NG, de Baulny HO, van Spronsen F, Zeman J, de Laet C, Spiekerkoetter U, Thimm E, Maiorana A, Dionisi-Vici C, Moeslinger D, Brunner-Krainz M, Lotz-Havla AS, Cocho de Juan JA, Couce Pico ML, Santer R, Scholl-Bürgi S, Mandel H, Bliksrud YT, Freisinger P, Aldamiz-Echevarria LJ, Hochuli M, Gautschi M, Endig J, Jordan J, McKiernan P, Ernst S, Morlot S, Vogel A, Sander J, Das AM (2014) Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 9:107

    Article  PubMed  PubMed Central  Google Scholar 

  • McKiernan PJ, Preece MA, Chakrapani A (2015) Outcome of children with hereditary tyrosinaemia following newborn screening. Arch Dis Child 100:738–741

    Article  CAS  PubMed  Google Scholar 

  • Mohan N, McKiernan P, Preece MA, Green A, Buckels J, Mayer AD, Kelly DA (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158(Suppl 2):S49–S54

    Article  PubMed  Google Scholar 

  • Nakamura K, Tanaka Y, Mitsubuchi H, Endo F (2007) Animal models of Tyrosinemia. J Nutr 137:1556S–1560S

    CAS  PubMed  Google Scholar 

  • Orejuela D, Jorquera R, Bergeron A, Finegold MJ, Tanguay RM (2008) Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah−/− knockout mice model. J Hepatol 48(2):308–317

    Article  CAS  PubMed  Google Scholar 

  • Paradis K, Weber A, Seidman EG, Larochelle J, Garel L, Lenaerts C, Roy CC (1990) Liver transplantation for he reditary tyrosinemia: the Quebec experience. Am J Hum Genet 47:338–342

    Google Scholar 

  • Pierik LJ, van Spronsen FJ, Bijleveld CM, van Dael CM (2005) Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 28(6):871–876

    Article  CAS  PubMed  Google Scholar 

  • Pronicka E, Rowinska E, Bentkowski Z, Zawadzki J, Holme E, Lindstedt S (1996) Treatment of two children with hereditary tyrosinaemia type I and long-standing renal disease with a 4 hydroxyphenylpyruvate dioxygenase inhibitor (NTBC). J Inherit Metab Dis 19:234–238

    Article  CAS  PubMed  Google Scholar 

  • Roth K, Spencer PD, Higgins ES, Spencer RF (1985) Effects of succinylacetone on methyl α-D-glucoside uptake by the rat renal tubule. Biochim Biophys Acta 820:140–146

    Article  CAS  PubMed  Google Scholar 

  • Santra S, Preece MA, Hulton SA, McKiernan PJ (2008) Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis 31:399–402

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker LR, Strife CF, Balistreri WF, Ryckman FC (1992) Rapid improvement in the renal tubular dysfunction associated with tyrosinemia following hepatic replacement. Pediatrics 89(2):251–255

    CAS  PubMed  Google Scholar 

  • Spencer PD, Roth KS (1987) Effects of succinylacetone on amino acid uptake in the rat kidney. Biochem Med Metab Biol 37:101–109

    Article  CAS  PubMed  Google Scholar 

  • Spencer PD, Medow MS, Moses LC, Roth KS (1988) Effects of succinylacetone on the uptake of sugars and amino acids by brush border vesicles. Kidney Int 34(5):671–677

    Article  CAS  PubMed  Google Scholar 

  • Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F (2000) A mouse model of renal tubular Injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 11:291–300

    CAS  PubMed  Google Scholar 

  • Trigg MJ, Gluecksohn-Waelsch S (1973) Ultrastructural basis of biochemical effects in a series of lethal alleles in the mouse. J Cell Biol 58:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchman M, Freese DK, Sharp HL, Ramnaraine ML, Ascher N, Bloomer JR (1987) Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation. J Pediatr 110(3):399–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Maiorana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Maiorana, A., Dionisi-Vici, C. (2017). NTBC and Correction of Renal Dysfunction. In: Tanguay, R. (eds) Hereditary Tyrosinemia. Advances in Experimental Medicine and Biology, vol 959. Springer, Cham. https://doi.org/10.1007/978-3-319-55780-9_8

Download citation

Publish with us

Policies and ethics