Skip to main content

Molecular Pathogenesis of Liver Injury in Hereditary Tyrosinemia 1

  • Chapter
  • First Online:
Hereditary Tyrosinemia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 959))

Abstract

Untreated HT1 rapidly degenerates into very severe liver complications often resulting in liver cancer. The molecular basis of the pathogenic process in HT1 is still unclear. The murine model of FAH-deficiency is a suitable animal model, which represents all phenotypic and biochemical manifestations of the human disease on an accelerated time scale. After removal of the drug 2-(2-N-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), numerous signaling pathways involved in cell proliferation, differentiation and cancer are rapidly deregulated in FAH deficient mice. Among these, the Endoplasmic reticulum (ER) pathway, the heat stress response (HSR), the Nrf2, MEK and ERK pathways, are highly represented. The p21 and mTOR pathways critical regulators of proliferation and tumorigenesis have also been found to be dysregulated. The changes in these pathways are described and related to the development of liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha feto protein

AKT:

Protein kinase B

CHOP:

C/EBP homologous protein

ER stress:

Endoplasmic reticulum stress

ERAD:

ER-stress associated degradation

ERK:

Extracellular signal-regulated kinase

FAA:

Fumarylacetoacetate

FAH:

Fumarylacetoacetate hydrolase

GSH:

Glutathione

HT1:

Hereditary tyrosinemia type 1

MAA:

Maleylacetoacetate

MCL-1:

Myeloid cell leukemia 1

SAC:

Succinylacetone

URP:

Unfolded protein response

References

  • Angileri F, Morrow G, Roy V, Orejuela D, Tanguay RM (2014) Heat shock response associated with hepatocarcinogenesis in a murine model of hereditary tyrosinemia type I. Cancers (Basel) 6(2):998–1019. doi:cancers6020998 [pii]. doi:10.3390/cancers6020998

    Article  CAS  Google Scholar 

  • Angileri F, Roy V, Morrow G, Scoazec JY, Gadot N, Orejuela D, Tanguay RM (2015) Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1. Biochim Biophys Acta. doi:10.1016/j.bbadis.2015.09.002

  • Banerjee P, Basu A, Datta D, Gasser M, Waaga-Gasser AM, Pal S (2011) The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK pathway and mediates anti-apoptotic signal. J Biol Chem 286(38):33580–33590. doi:M111.248401 [pii]. doi:10.1074/jbc.M111.248401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron A, Jorquera R, Tanguay RM (2003) Hereditary tyrosinemia: an endoplasmic reticulum stress disorder? Med Sci (Paris) 19(10):976–980. doi:007170ar [pii]. doi:10.1051/medsci/20031910976

    Article  Google Scholar 

  • Bergeron A, Jorquera R, Orejuela D, Tanguay RM (2006) Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I. J Biol Chem 281(9):5329–5334. doi:M506804200 [pii]. doi:10.1074/jbc.M506804200

    Article  CAS  PubMed  Google Scholar 

  • Bliksrud YT, Ellingsen A, Bjoras M (2013) Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 36(5):773–778. doi:10.1007/s10545-012-9556-0

    Article  CAS  PubMed  Google Scholar 

  • Bruey JM, Paul C, Fromentin A, Hilpert S, Arrigo AP, Solary E, Garrido C (2000) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19(42):4855–4863. doi:10.1038/sj.onc.1203850

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460. doi:10.1016/j.cell.2008.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buitrago-Molina LE, Pothiraju D, Lamle J, Marhenke S, Kossatz U, Breuhahn K, Manns MP, Malek N, Vogel A (2009) Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. Hepatology 50(2):500–509. doi:10.1002/hep.23014

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Gong J (2016) Heat Shock proteins promote cancer: it’s a protection racket. Trends Biochem Sci. doi:10.1016/j.tibs.2016.01.003

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105. doi:10.1038/ng1937

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87(1):19–48. doi:10.1007/s00204-012-0918-z

    Article  CAS  PubMed  Google Scholar 

  • Dieter MZ, Freshwater SL, Miller ML, Shertzer HG, Dalton TP, Nebert DW (2003) Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. Free Radic Biol Med 35(4):351–367. doi:S0891584903002739 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Espeillac C, Mitchell C, Celton-Morizur S, Chauvin C, Koka V, Gillet C, Albrecht JH, Desdouets C, Pende M (2011) S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. J Clin Invest 121(7):2821–2832. doi:10.1172/JCI44203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao T, Newton AC (2002) The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 277(35):31585–31592. doi:10.1074/jbc.M204335200

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Lindstedt S, Al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10(4):453–460. doi:10.1038/ng0895-453

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L, Komnenovic V, Scheuch H, Beug H, Wagner EF (2007) p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39(6):741–749. doi:10.1038/ng2033

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF (2008) Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 118(12):3943–3953. doi:10.1172/JCI37156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191. doi:10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Qian X, Shen J, Wang Y, Li X, Liu R, Xia Y, Chen Q, Peng G, Lin SY, Lu Z (2015) Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol 17(9):1158–1168. doi:10.1038/ncb3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232(1):42–48. (47). doi:http://dx.doi.org/10.1006/bbrc.1997.6220

    Article  CAS  PubMed  Google Scholar 

  • Jorquera R, Tanguay RM (1999) Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis. FASEB J 13:2284–2298

    CAS  PubMed  Google Scholar 

  • Jorquera R, Tanguay RM (2001) Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum Mol Genet 10(17):1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111. doi:10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Sun M, Miyahara M, Umeyama K, Urakami K, Yamamoto T, Jakobs C, Matsuda I, Endo F (1998) Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci U S A 95(16):9552–9557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464. doi:10.1146/annurev-biochem-060614-033955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamle J, Marhenke S, Borlak J, von Wasielewski R, Eriksson CJ, Geffers R, Manns MP, Yamamoto M, Vogel A (2008) Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134(4):1159–1168. doi:10.1053/j.gastro.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280(8):6634–6641. doi:M412393200 [pii]10.1074/jbc.M412393200

    Article  CAS  PubMed  Google Scholar 

  • Lehmann K, Tschuor C, Rickenbacher A, Jang JH, Oberkofler CE, Tschopp O, Schultze SM, Raptis DA, Weber A, Graf R, Humar B, Clavien PA (2012) Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology 143(6):1609–1619. e1604. doi:10.1053/j.gastro.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  • Manabe S, Sassa S, Kappas A (1985) Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. J Exp Med 162(3):1060–1074

    Article  CAS  PubMed  Google Scholar 

  • Marhenke S, Lamle J, Buitrago-Molina LE, Canon JM, Geffers R, Finegold M, Sporn M, Yamamoto M, Manns MP, Grompe M, Vogel A (2008) Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology 48(2):487–496. doi:10.1002/hep.22391

    Article  CAS  PubMed  Google Scholar 

  • Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM (2012) Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 55(1):121–131. doi:10.1002/hep.24653

    Article  CAS  PubMed  Google Scholar 

  • Orejuela D, Jorquera R, Bergeron A, Finegold MJ, Tanguay RM (2008) Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah−/− knockout mice model. J Hepatol 48(2):308–317. doi:S0168-8278(07)00590-9 [pii]. doi:10.1016/j.jhep.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  • Oya-Ito T, Liu BF, Nagaraj RH (2006) Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem 99(1):279–291. doi:10.1002/jcb.20781

    Article  CAS  PubMed  Google Scholar 

  • Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, Wilkens L, Destro A, Fiamengo B, Manns MP, Roncalli M, Rudolph KL (2007) Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology 45(4):968–976. doi:10.1002/hep.21552

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Wang X, Leibowitz B, Yang W, Zhang L, Yu J (2011) PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54(4):1249–1258. doi:10.1002/hep.24516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14(10):630–642. doi:10.1038/nrm3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14(2):156–165. doi:10.1016/j.ccr.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu IS, Maksim NJ, Amouzougan EA, Gallion BW, Raviele AL, Ooi A (2015) Sustained NRF2 activation in hereditary leiomyomatosis and renal cell cancer (HLRCC) and in hereditary tyrosinemia type 1 (HT1). Biochem Soc Trans 43(4):650–656. doi:10.1042/BST20150041

    Article  CAS  PubMed  Google Scholar 

  • Schungel S, Buitrago-Molina LE, Nalapareddy P, Lebofsky M, Manns MP, Jaeschke H, Gross A, Vogel A (2009) The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology 50(5):1558–1566. doi:10.1002/hep.23176

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12(8):564–571. doi:10.1038/nrc3278

    Article  CAS  PubMed  Google Scholar 

  • Tanguay RM, Jorquera R, Poudrier J, St-Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43(1):209–216

    CAS  PubMed  Google Scholar 

  • Vihervaara A, Sistonen L (2014) HSF1 at a glance. J Cell Sci 127(Pt 2):261–266. doi:10.1242/jcs.132605

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, van Den Berg IE, Al-Dhalimy M, Groopman J, Ou CN, Ryabinina O, Iordanov MS, Finegold M, Grompe M (2004) Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology 39(2):433–443. doi:10.1002/hep.20077

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Aslan JE, Willenbring H, Klein C, Finegold M, Mount H, Thomas G, Grompe M (2006) Sustained phosphorylation of Bid is a marker for resistance to Fas-induced apoptosis during chronic liver diseases. Gastroenterology 130(1):104–119. doi:10.1053/j.gastro.2005.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Was H, Dulak J, Jozkowicz A (2010) Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets 11(12):1551–1570. doi:BSP/CDT/E-Pub/00150 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Willenbring H, Sharma AD, Vogel A, Lee AY, Rothfuss A, Wang Z, Finegold M, Grompe M (2008) Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. Cancer Cell 14(1):59–67. doi:S1535-6108(08)00159-1 [pii]. doi:10.1016/j.ccr.2008.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji S, Zhang M, Zhang J, Endo Y, Bibikova E, Goff SP, Cang Y (2010) Hepatocyte-specific deletion of DDB1 induces liver regeneration and tumorigenesis. Proc Natl Acad Sci U S A 107(51):22237–22242. doi:10.1073/pnas.1015793108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5(9):752–762. doi:10.1038/nrm1443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in RMT’s lab was supported by the Canadian Institute of Health Research (CIHR) and La Fondation Pierre Lavoie (GO). FA received post-doctoral fellowships from PROTEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Tanguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tanguay, R.M., Angileri, F., Vogel, A. (2017). Molecular Pathogenesis of Liver Injury in Hereditary Tyrosinemia 1. In: Tanguay, R. (eds) Hereditary Tyrosinemia. Advances in Experimental Medicine and Biology, vol 959. Springer, Cham. https://doi.org/10.1007/978-3-319-55780-9_4

Download citation

Publish with us

Policies and ethics