Skip to main content

A Comparison of Climatic Niches of the Same Alpine Plant Species in the Central Caucasus and the Alps

  • Chapter
  • First Online:
Plant Diversity in the Central Great Caucasus: A Quantitative Assessment

Part of the book series: Geobotany Studies ((GEOBOT))

  • 453 Accesses

Abstract

It has been known for years that the elevational and latitudinal range limits of plant taxa are likely to be correlated (e.g. Humboldt 1817; Pellissier et al. 2013; Randin et al. 2013) and the elevation-for-latitude correspondence model has for long attracted ecologists and biogeographers. However, comparisons of the environmental niche of a common set of native plant species between geographically isolated regions but sharing similar climatic conditions have rarely been achieved (but see Randin et al. 2006 in the Alps). The large number of shared alpine plant species between the Alps and the Caucasus and the increasing availability of georeferenced occurrences and climatic data offer now opportunities to perform such across-mountain range comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60:255–265

    Article  Google Scholar 

  • Azola C, Harrell FE (2001) Introduction to S-Plus and the Hmisc and design libraries. University of Virginia School of Medicine

    Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704

    Article  Google Scholar 

  • Coudun C, Gegout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–1763

    Article  Google Scholar 

  • Cox DR, Snell EJ (1989) Analysis of binary data, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330

    Article  CAS  PubMed  Google Scholar 

  • Dirnböck T, Dullinger S (2004) Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species. J Veg Sci 15:77–84

    Article  Google Scholar 

  • Dirnböck T, Düllinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417

    Article  Google Scholar 

  • Duque-Lazo J, van Gils H, Groen TA, Navarro-Cerrillo RM (2016) Transferability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol Model 320(C):62–70

    Article  Google Scholar 

  • ESRI (2004) ARCInfo Version 9.3. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Essl F, Dullinger S, Plutzar C, Willner W, Rabitsch W (2011) Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. J Biogeogr 38:604–614

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence-absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct Alp Res 30:207–221

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Humboldt A v (1817) Des lignes isothermes et de la distribution de la chaleur sur le globe. Mémoires de Physique et de Chimie de la Société d’Arcueil 3:462–602

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org

  • Joshi J, Schmid B, Caldeira M, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  • Lassueur T, Joost S, Randin CF (2006) Very high resolution digital elevation models: do they improve models of plant species distribution? Ecol Model 198:139–153

    Article  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Liston GE, Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7:1259–1276

    Article  Google Scholar 

  • Mäki-Petäys A, Huusko A, Erkinaro J, Muotka T (2002) Transferability of habitat suitability criteria of juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 59:218–228

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Meier ES, Kienast F, Pearman PB, Svenning J-C, Thuiller W, Araujo MB, Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048

    Article  Google Scholar 

  • Meier ES, Edwards TC, Kienast F, Dobbertin M, Zimmermann NE (2011) Competition patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica. J Biogeogr 38:371–382

    Article  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning J-C (2009) Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob Ecol Biogeogr 18:437–449

    Article  Google Scholar 

  • Odland A, Birks HJB (1999) The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography 22:548–566

    Article  Google Scholar 

  • Ozesmi U, Mitsch WJ (1997) A spatial habitat model for the marsh-breeding red-winged blackbird (Agelaius phoeniceus L) in coastal Lake Erie wetlands. Ecol Model 101:139–152

    Article  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler R, Le Lay G, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369

    Article  PubMed  Google Scholar 

  • Pellissier L, Brathen KA, Pottier J, Randin CF, Vittoz P, Dubuis A, Yoccoz NG, Alm T, Zimmermann NE, Guisan A (2010) Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography 33:1004–1014

    Article  Google Scholar 

  • Pellissier L, Brathen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22:933–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigott CD, Huntley JP (1981) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III. Nature and causes of seed sterility. New Phytol 87:817–839

    Article  Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2002) Geographic variability of ecological niches of plant species: are competition and stress relevant? Ecography 25:721–729

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Chang Biol 15:1557–1569

    Article  Google Scholar 

  • Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE, Körner C (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–923

    Article  Google Scholar 

  • Randin CF, Dedieu JP, Zappa M, Long L, Dullinger S (2015) Validation of and comparison between a semidistributed rainfall-runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology 8(7):1181–1193

    Article  Google Scholar 

  • Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698

    Article  PubMed  Google Scholar 

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Chang Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schröder B, Richter O (1999/2000) Are habitat models transferable in space and time? Zeitschrift für Ökologie und Naturschutz 8:195–205

    Google Scholar 

  • Soberon J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Takhtajan AL (1946) On the history of vegetation development in Armenia. Trudy Bot Inst Akad Nauk Armenii, Erevan 4:51–107 (in Russian)

    Google Scholar 

  • Thuiller W (2003) Impact des changements globaux sur la biodiversité en Europe: projections et incertitudes. PhD Thesis, Université Montpelier II, Montpelier

    Google Scholar 

  • Tumadjanov II (1947) Forest vegetation of Teberda valley in the light of post-glacial history of phytolandscapes development. Trud Tbil Botan inst-ta 11:98–104 (in Russian)

    Google Scholar 

  • van der Maarel E (1993) Relations between sociological-ecological species groups and Ellenberg indicator values. Phytocoenologia 23:343–362

    Article  Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 39:1439–1449

    Article  Google Scholar 

  • Voskanyan Y (1976) Flora and vegetation of the upper part of alpine and subnival belts of Mt. Aragats. Biologicheskiy Zhurnal Armenii 19:19–26 (in Russian)

    Google Scholar 

  • Walter H, Breckle SW (1985) Ecological systems of the biosphere. I. Ecological principles in global perspective. Springer, Berlin

    Google Scholar 

  • Willmanns O (1993) Okologische Pflanzensoziologie. Quelle and Mayer, Heidelberg

    Google Scholar 

  • Yang Y, Körner C, Sun H (2008) The ecological significance of pubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant”. Arct Antarct Alp Res 40(1):250–255

    Article  Google Scholar 

  • Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence. Trends Ecol Evol 12:266–269

    Article  CAS  PubMed  Google Scholar 

  • Zurebiani B (1976) Flora and vegetation of Mestia-chala gorge. Manuscript of Doctoral dissertation, Tbilisi (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe F. Randin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Randin, C.F., Pellissier, L., Guisan, A., Nakhutsrishvili, G. (2017). A Comparison of Climatic Niches of the Same Alpine Plant Species in the Central Caucasus and the Alps. In: Nakhutsrishvili, G., Abdaladze, O., Batsatsashvili, K., Spehn, E., Körner, C. (eds) Plant Diversity in the Central Great Caucasus: A Quantitative Assessment. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-55777-9_5

Download citation

Publish with us

Policies and ethics