Skip to main content

Glutamine/Glutamate Transporters in Glial Cells: Much More Than Participants of a Metabolic Shuttle

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

Glial glutamine and glutamate transporters play an important role in glial/neuronal interactions. An excellent model to establish the role of these membrane proteins is the cerebellum. The most abundant glutamatergic synapse in the central nervous system is present in the molecular layer of the cerebellar cortex, and it is entirely wrapped by Bergmann glial cells. The recycling of glutamate involves glutamate and glutamine transporters enriched in these radial glial processes. The functional properties of amino acid glial transporters allow, in an activity-dependent manner, the conformation of protein complexes important for the adequate support of glutamatergic neurotransmission. A detailed description of the most important features of glial glutamate and glutamine transporters follows, and a working model of the molecular mechanisms by which these glutamate and glutamine binding proteins interact, and by these means might modulate cerebellar glutamatergic transactions, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate

ASC:

Alanine/serine/cysteine transporter subfamily

ATP:

Adenosine triphosphate

BCH:

2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid

CATs:

Cationic amino acid transporters

CNS:

Central nervous system

E15:

Embryonic day 15

E19:

Embryonic day 19

EAAT:

Excitatory amino acid transporter

EAAT1:

Excitatory amino acid transporter 1 (GLAST, SLC1a3)

EAAT2:

Excitatory amino acid transporter 2 (GLT-1, SLC1a2)

EAAT3:

Excitatory amino acid transporter 3

EAAT4:

Excitatory amino acid transporter 4

EAAT5:

Excitatory amino acid transporter 5

GABA:

Gamma-aminobutyric acid

Glut1:

Glucose transporter 1

GRIs:

Ionotropic glutamate receptors

GRIA2:

Glutamate ionotropic receptor AMPA type subunit 2

GRMs:

Metabotropic glutamate receptors

GSH:

Glutathione

KA:

Kainate

L-AP-4:

L-2-amino-phosphonobutanoate

LATs:

Light subunits of amino acid transporters

MeAIB:

2-Methylaminoisobutyric acid

mRNA:

Messenger ribonucleic acid

mTOR:

Mechanistic target of rapamycin

NMDA:

N-Methyl-d-aspartate

PI3K:

Phosphatidylinositol 3-kinase

PKB:

Protein kinase B

PNS:

Peripheral nervous system

Quis:

Quisqualate

Rho:

Ras homolog gene family

ROS:

Reactive oxygen species

SA:

System A

SLC1:

Solute carrier family 1

SLC14A:

Solute carrier family 1 member 4 (ASCT1)

SLC15A:

Solute carrier family 1 member 5 (ASCT2)

SLC38:

Solute carrier family 38

SLC38A1:

Solute carrier family 38 member 1 (SNAT1)

SLC38A2:

Solute carrier family 38 member 2 (SNAT2)

SLC38A3:

Solute carrier family 38 member 3 (SNAT3)

SLC38A4:

Solute carrier family 38 member 4 (SNAT4)

SLC38A5:

Solute carrier family 38 member 5 (SNAT5)

SLC38A7:

Solute carrier family 38 member 7 (SNAT7)

SLC38A8:

Solute carrier family 38 member 8 (SNAT8)

SLC6:

Solute carrier family 6

SLC6A14:

Solute carrier family 6 member 14 (ATBo)

SLC6A15:

Solute carrier family 6 member 15 (BoAT2)

SLC6A19:

Solute carrier family 6 member 19 (BoAT1)

SLC7:

Solute carrier family 7

SLC7A5:

Solute carrier family 7 member 5 (LAT1)

SLC7A8:

Solute carrier family 7 member 8 (LAT2)

SN:

System N

SNAT:

Sodium-coupled neutral amino acid transporter

tACPD:

1-Amino-4,5-cyclopentane-trans-1,3-dicarboxylate

Xc :

Anionic amino acid transporter light chain, Xc-system, member 11 (SLC7a11)

xCT:

Functional subunit of anionic amino acid transporter light chain, Xc-system, member 11

References

  • Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol. Disord. Drug Targets. 2010a;9:373–82.

    Article  CAS  Google Scholar 

  • Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M. Roles of glutamine in neurotransmission. Neuron Glia Biol. 2010b;6:263–76. doi:10.1017/S1740925X11000093.

    Article  PubMed  Google Scholar 

  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres B a. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486:410–4. doi:10.1038/nature11059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avissar NE, Sax HC, Toia L. In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and rho-dependent. Dig Dis Sci. 2008; doi:10.1007/s10620-007-0120-y.

  • Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Filho WJ, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41. doi:10.1002/cne.21974.

    Article  PubMed  Google Scholar 

  • Babu E, Bhutia YD, Ramachandran S, Gnanaprakasam JP, Prasad PD, Thangaraju M, Ganapathy V. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer. Biochem J. 2015;469:17–23. doi:10.1042/BJ20150437.

    Article  CAS  PubMed  Google Scholar 

  • Baird FE, Pinilla-Tenas JJ, Ogilvie WLJ, Ganapathy V, Hundal HS, Taylor PM. Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue. Biochem J. 2006;397:369–75. doi:10.1042/BJ20060026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera I, Flores-Méndez M, Hernández-Kelly LC, Cid L, Huerta M, Zinker S, López-Bayghen E, Aguilera J, Ortega A. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochem Int. 2010;57:795–803. doi:10.1016/j.neuint.2010.08.017.

    Article  CAS  PubMed  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95. doi:10.1002/cne.24040.

    Article  Google Scholar 

  • Bellamy TC, Ogden D. Long-term depression of neuron to glial signalling in rat cerebellar cortex. Eur J Neurosci. 2006;23:581–6. doi:10.1111/j.1460-9568.2005.04588.x.

    Article  PubMed  Google Scholar 

  • Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 2016;1863:2531–9. doi:10.1016/j.bbamcr.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  • Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA. Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia. 2003;41:260–75. doi:10.1002/glia.10188.

    Article  PubMed  Google Scholar 

  • Broer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int. 2006; doi:10.1016/j.neuint.2005.11.021.

  • Broer S, Brookes N. Transfer of glutamine between astrocytes and neurons. J Neurochem. 2001;77:705–19. doi:10.1046/j.1471-4159.2001.00322.x.

    Article  CAS  PubMed  Google Scholar 

  • Bröer a, Brookes N, Ganapathy V, Dimmer KS, Wagner C a, Lang F, Bröer S. The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem. 1999;73:2184–94.

    PubMed  Google Scholar 

  • Bröer A, Albers A, Setiawan I, Edwards RH, Chaudhry F a, Wagner CA, Bröer S. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J Physiol. 2002;539:3–14. doi:10.1013/jphysiol.2001.013303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broer A, Deitmer JW, Broer S. Astroglial glutamine transport by system N is upregulated by glutamate. Glia. 2004;48:298–310. doi:10.1002/glia.20081.

    Article  PubMed  Google Scholar 

  • BrosiusLutz A, Barres BA. Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell. 2014;28:7–17. doi:10.1016/j.devcel.2013.12.002.

    Article  CAS  Google Scholar 

  • Chaudhry F a, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell. 1999;99:769–80. doi:10.1016/S0092-8674(00)81674-8.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, Storm-Mathisen J, Copenhagen D, Kavanaugh M, Edwards RH. Coupled and uncoupled proton movement by amino acid transport system N. EMBO J. 2002;20:7041–51. doi:10.1093/emboj/20.24.7041.

    Article  Google Scholar 

  • Collarini EJ, Oxender DL. Mechanisms of transport of amino acids across membranes. Annu Rev Nutr. 1987;7:75–90. doi:10.1146/annurev.nutr.7.1.75.

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Melone M. The glutamine commute: lost in the tube? Neurochem Int. 2006;48:459–64. doi:10.1016/j.neuint.2005.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI. Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res. 2016;29:460–8.

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int. 2016;98:29–45. doi:10.1016/j.neuint.2016.05.009.

    Article  CAS  PubMed  Google Scholar 

  • De Bundel D, Schallier A, Loyens E, Fernando R, Miyashita H, Van Liefferinge J, Vermoesen K, Bannai S, Sato H, Michotte Y, Smolders I, Massie A. Loss of system x(c)- formula does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci. 2011;31:5792–803.

    Article  PubMed  Google Scholar 

  • Deberardinis R, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2009;29:313–24. doi:10.1038/onc.2009.358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-M Endez M, Mendez-Flores OG, Ortega A. Glia plasma membrane transporters: key players in glutamatergic neurotransmission. Neurochem Int. 2016;98:46–55. doi:10.1016/j.neuint.2016.04.004.

    Article  CAS  Google Scholar 

  • Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66. doi:10.1016/j.semcancer.2005.04.005.

  • Fuchs BC, Finger RE, Onan MC, Bode BP. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am J Physiol Cell Physiol. 2007;293:C55–63. doi:10.1152/ajpcell.00330.2006.

    Article  CAS  PubMed  Google Scholar 

  • Gallo V, Ghiani CA. Glutamate receptors in glla: new cells, new inputs and new functions. Trends Pharmacol Sci. 2000;21:252–8.

    Article  CAS  PubMed  Google Scholar 

  • Gasic GP, Heinemann S. Determinants of the calcium permeation of ligand-gated cation channels. Curr Opin Cell Biol. 1992;4:670–7. doi:10.1016/0955-0674(92)90088-T.

    Article  CAS  PubMed  Google Scholar 

  • Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int. 2000;37:163–70. doi:10.1016/S0197-0186(00)00019-X.

    Article  CAS  PubMed  Google Scholar 

  • Gegelashvili M, Rodriguez-Kern A, Sung L, Shimamoto K, Gegelashvili G. Glutamate transporter GLAST/EAAT1 directs cell surface expression of FXYD2/γ subunit of Na, K-ATPase in human fetal astrocytes. Neurochem Int. 2007;50:916–20. doi:10.1016/j.neuint.2006.12.015.

    Article  CAS  PubMed  Google Scholar 

  • Gerich JE, Meyer C, Stumvoll MW. Hormonal control of renal and systemic glutamine metabolism. J Nutr. 2000;130(4S Suppl):995S–1001S.

    CAS  PubMed  Google Scholar 

  • Gliddon CM, Shao Z, LeMaistre JL, Anderson CM. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem. 2009;108:372–83. doi:10.1111/j.1471-4159.2008.05767.x.

  • González MI, Ortega A. Regulation of high-affinity glutamate uptake activity in Bergmann glia cells by glutamate. Brain Res. 2000;866:73–81. doi:10.1016/S0006-8993(00)02226-5.

    Article  PubMed  Google Scholar 

  • Gonzalez-Gonzalez IM, Cubelos B, Gimenez C, Zafra F. Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. Neuroscience. 2005;130:61–73. doi:10.1016/j.neuroscience.2004.09.023.

  • González-Mejia ME, Morales M, Hernández-Kelly LCR, Zepeda RC, Bernabé A, Ortega A. Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience. 2006;141:1389–98. doi:10.1016/j.neuroscience.2006.04.076.

    Article  PubMed  Google Scholar 

  • Grosche J, Matyash V, Möller T, Verkhratsky a, Reichenbach a, Kettenmann H. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999;2:139–43. doi:10.1038/5692.

    Article  CAS  PubMed  Google Scholar 

  • Hagglund MGA, Sreedharan S, Nilsson VCO, Shaik JHA, Almkvist IM, Backlin S, Wrange O, Fredriksson R. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem. 2011; doi:10.1074/jbc.M110.162404.

  • Hagglund MGA, Hellsten SV, Bagchi S, Philippot G, Lofqvist E, Nilsson VCO, Almkvist I, Karlsson E, Sreedharan S, Tafreshiha A, Fredriksson R. Transport of l-glutamine, l-alanine, l-arginine and l-histidine by the neuron-specific slc38a8 (SNAT8) in cns. J Mol Biol. 2015; doi:10.1016/j.jmb.2014.10.016.

  • Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L. Roles of astrocytic Na(+), K(+) -ATPase and glycogenolysis for K(+) homeostasis in mammalian brain. J Neurosci Res. 2015;93:1019–30. doi:10.1002/jnr.23499.

    Article  CAS  PubMed  Google Scholar 

  • Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa a, Takayasu Y, Saito I, Tsuzuki K, Ozawa S. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science. 2001;292:926–9. doi:10.1126/science.1058827.

    Article  CAS  PubMed  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10:331–9. doi:10.1038/nn1849.

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Asp Med. 2013;34:108–20. doi:10.1016/j.mam.2013.01.001.

    Article  CAS  Google Scholar 

  • Kriegstein A, Alvarez-buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84. doi:10.1146/annurev.neuro.051508.135600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labow BI, Souba WW. Glutamine. World J Surg. 2000; doi:10.1007/s002680010269.

  • Levi G, Gordon RD, Gallo V, Wilkin GP, Balàzs R. Putative acidic amino acid transmitters in the cerebellum I. Depolarization-induced release Brain Res. 1982;239:425–45. doi:10.1016/0006-8993(82)90520-0.

    CAS  PubMed  Google Scholar 

  • López-Bayghen E, Ortega A. Glial glutamate transporters: New actors in brain signaling. IUBMB Life. 2011;63:816–23. doi:10.1002/iub.536.

    Article  PubMed  Google Scholar 

  • Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch - Eur J Physiol. 2004;447:784–95. doi:10.1007/s00424-003-1117-9.

  • Martínez-Lozada Z, Ortega A. Glutamatergic transmission: A matter of three. Neural Plast. 2015;2015 doi:10.1155/2015/787396.

  • Martínez-Lozada Z, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A. Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int. 2011;59:871–9. doi:10.1016/j.neuint.2011.07.015.

    Article  PubMed  Google Scholar 

  • Martínez-Lozada Z, Guillem AM, Flores-Méndez M, Hernández-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodríguez A, Ortega A. GLAST/EAAT1-induced Glutamine release via SNAT3 in Bergmann glial cells: Evidence of a functional and physical coupling. J Neurochem. 2013; doi:10.1111/jnc.12211.

  • Martinez-Lozada Z, Waggener CT, Kim K, Zou S, Knapp PE, Hayashi Y, Ortega A, Fuss B. Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIβ’s actin-binding/-stabilizing domain. Glia. 2014;62:1543–58. doi:10.1002/glia.22699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lozada, Z, Guillem, AM, Robinson, MB. Transcriptional regulation of glutamate transporters. From extracellular signals to transcription factors, 1st ed. Adv Pharmacol. Elsevier, 2016. doi:10.1016/bs.apha.2016.01.004

  • Nagaraja TN, Brookes N. Glutamine transport in mouse cerebral astrocytes. J Neurochem. 1996;66:1665–74.

    Article  CAS  PubMed  Google Scholar 

  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell. 2009; doi:10.1016/j.cell.2008.11.044.

  • Nulty J, Alsaffar M, Barry D. Radial glial cells organize the central nervous system via microtubule dependant processes. Brain Res. 2015;1625:171–9. doi:10.1016/j.brainres.2015.08.027.

    Article  CAS  PubMed  Google Scholar 

  • Palmada M, Speil A, Jeyaraj S, Böhmer C, Lang F. The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Commun: Biochem. Biophys. Res; 2005. doi:10.1016/j.bbrc.2005.03.159.

    Google Scholar 

  • Parpura V, Verkhratsky A. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J. 2012;53:518–28. doi:10.3325/cmj.2012.53.518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63:93–102. doi:10.1016/j.brainresrev.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  • Pin J-P, Duvoisin R. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology. 1995;34:1–26. doi:10.1016/0028-3908(94)00129-G.

    Article  CAS  PubMed  Google Scholar 

  • Pingitore P, Pochini L, Scalise M, Galluccio M, Hedfalk K, Indiveri C. Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris – Functional and kinetic asymmetry revealed in proteoliposomes. Biochim Biophys Acta Biomembr. 2013;1828:2238–46. doi:10.1016/j.bbamem.2013.05.034.

  • Pochini L, Scalise M, Galluccio M, Indiveri C, Giulivi C, Coe IR. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem. 2014;11:61. doi:10.3389/fchem.2014.00061.

    Google Scholar 

  • Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol Asp Med. 2013; doi:10.1016/j.mam.2012.07.002.

  • Prasad PD, Wang H, Huang W, Kekuda R, Rajan DP, Leibach FH, Ganapathy V. Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function. Biochem Biophys Res Commun. 1999;255:283–8.

    Article  CAS  PubMed  Google Scholar 

  • Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse ATS, Gonçalves C. Toxicology in Vitro Oxidative stress mediated by NMDA, AMPA / KA channels in acute hippocampal slices: Neuroprotective effect of resveratrol. Toxicol in Vitro. 2014;28:544–51.

    Article  CAS  PubMed  Google Scholar 

  • Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci. 2016;10:1–28. doi:10.3389/fnhum.2016.00566.

    Article  Google Scholar 

  • Ren P, Yue M, Xiao D, Xiu R, Gan L, Liu H, Qing G. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J Pathol. 2015;235:90–100. doi:10.1002/path.4429.

    Article  CAS  PubMed  Google Scholar 

  • Rennie MJ, Ahmed A, Khogali SE, Low SY, Hundal HS, Taylor PM. Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J Nutr. 1996;126:1142S–9S.

    CAS  PubMed  Google Scholar 

  • Robel S, Sontheimer H. Glia as drivers of abnormal neuronal activity. Nat Neurosci. 2016;19:28–33. doi:10.1038/nn.4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MB. Acute regulation of sodium-dependent glutamate transporters: A focus on constitutive and regulated trafficking. Handb Exp Pharmacol. 2006;175:251–75. doi:10.1007/3-540-29784-7-13.

    Article  CAS  Google Scholar 

  • Rosas S, Vargas MA, López-Bayghen E, Ortega A. Glutamate-dependent transcriptional regulation of GLAST/EAAT1: A role for YY1. J Neurochem. 2007;101:1134–44. doi:10.1111/j.1471-4159.2007.04517.x.

    Article  CAS  PubMed  Google Scholar 

  • Rose EM, Koo JCP, Antflick JE, Ahmed SM, Angers S, Hampson DR. Glutamate transporter coupling to Na. K-ATPase J Neurosci. 2009;29:8143–55. doi:10.1523/JNEUROSCI.1081-09.2009.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16:675–86. doi:10.1016/S0896-6273(00)80086-0.

    Article  CAS  PubMed  Google Scholar 

  • Scalise M, Pochini L, Galluccio M, Indiveri C, Bernardi P. Glutamine transport. From energy supply to sensing and beyond. Biochim Biophys Acta. 2016;1857:1147–57. doi:10.1016/j.bbabio.2016.03.006.

    Article  CAS  PubMed  Google Scholar 

  • Sidoryk-Wmgrzynowicz M, Lee E, Albrecht J, Aschner M. Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem. 2009;110:822–30. doi:10.1111/j.1471-4159.2009.06172.x.

  • Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem. 1999;274:23740–5. doi:10.1074/jbc.274.34.23740.

    Article  CAS  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992;89:10955–9. doi:10.1073/pnas.89.22.10955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su TZ, Campbell GW, Oxender DL. Glutamine transport in cerebellar granule cells in culture. Brain Res. 1997;757:69–78.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Yamamoto A, Fujita T. Functional expression and adaptive regulation of Na+-dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition. Neurosci Lett. 2005;378:70–5. doi:10.1016/j.neulet.2004.12.030.

  • Taylor PM. Role of amino acid transporters in amino acid sensing. Am J Clin Nutr. 2014; doi:10.3945/ajcn.113.070086.

  • Taylor L, Curthoys NP. Glutamine metabolism: Role in acid-base balance. Biochem Mol Biol Educ. 2004; doi:10.1002/bmb.2004.494032050388.

  • Teichberg VI. Glial glutamate receptors: likely actors in brain signaling. FASEB J. 1991;5:3086–91.

    CAS  PubMed  Google Scholar 

  • Trotti D, Aoki M, Pasinelli P, Berger UV, Danbolt NC, Brown RH, Hediger MA. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem. 2001;276:576–82. doi:10.1074/jbc.M003779200.

    Article  CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105:18782–7. doi:10.1073/pnas.0810199105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zepeda RC, Barrera I, Castelán F, Suárez-Pozos E, Melgarejo Y, González-Mejia E, Hernández-Kelly LC, López-Bayghen E, Aguilera J, Ortega A. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochem Int. 2009;55:282–7. doi:10.1016/j.neuint.2009.03.011.

    Article  CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem. 1996;271:27991–4. doi:10.1074/jbc.271.45.27991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in our laboratories is supported by grants from Conacyt-México (255087) to A.O., Soluciones para un México Verde to A.O., and FOFI-UAQ2015 (FNN201608) to A.R.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez, A., Ortega, A. (2017). Glutamine/Glutamate Transporters in Glial Cells: Much More Than Participants of a Metabolic Shuttle. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_8

Download citation

Publish with us

Policies and ethics