Skip to main content

Glutamate Transporters in the Blood-Brain Barrier

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

The amino acid L-glutamate serves a number of roles in the central nervous system, being an excitatory neurotransmitter, metabolite, and building block in protein synthesis. During pathophysiological events, where L-glutamate homeostasis cannot be maintained, the increased brain interstitial fluid concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries, regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. A number of studies have shown that brain endothelial cells express excitatory amino acid transporters, which may account for abluminal concentrative uptake of L-glutamate into the capillary endothelial cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, et al. Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem. 2000;74(6):2622–5.

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A. 1997;94(8):4155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balcar VJ, Johnston GA. Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids. J Neurobiol. 1972;3(4):295–301.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin AM, Quastel JH. Cerebral uptakes and exchange diffusion in vitro of L- and D-glutamates. J Neurochem. 1976;26(3):431–41.

    Article  CAS  PubMed  Google Scholar 

  • Benrabh H, Lefauconnier JM. Glutamate is transported across the rat blood-brain barrier by a sodium-independent system. Neurosci Lett. 1996;210(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  • Blondeau JP. Homologues of amino acid permeases: cloning and tissue expression of XAT1 and XAT2. Gene. 2002;286(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  • Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011a;31(6):1378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos F, Rodriguez-Yanez M, Castellanos M, Arias S, Perez-Mato M, Sobrino T, et al. Blood levels of glutamate oxaloacetate transaminase are more strongly associated with good outcome in acute ischaemic stroke than glutamate pyruvate transaminase levels. Clin Sci (Lond). 2011b;121(1):11–7.

    Article  CAS  Google Scholar 

  • Cardelli-Cangiano P, Cangiano C, James JH, Jeppsson B, Brenner W, Fischer JE. Uptake of amino acids by brain microvessels isolated from rats after portacaval anastomosis. J Neurochem. 1981;36(2):627–32.

    Article  CAS  PubMed  Google Scholar 

  • Castillo J, Loza MI, Mirelman D, Brea J, Blanco M, Sobrino T, et al. A novel mechanism of neuroprotection: blood glutamate grabber. J Cereb Blood Flow Metab. 2016;36(2):292–301.

    Article  CAS  PubMed  Google Scholar 

  • Cederberg HH, Uhd NC, Brodin B. Glutamate efflux at the blood-brain barrier: cellular mechanisms and potential clinical relevance. Arch Med Res. 2014;45(8):639–45.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron. 1995;15(3):711–20.

    Article  CAS  PubMed  Google Scholar 

  • Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen HN. Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta. 1984;779(3):255–69.

    Article  CAS  PubMed  Google Scholar 

  • Chun HB, Scott M, Niessen S, Hoover H, Baird A, Yates J 3rd, et al. The proteome of mouse brain microvessel membranes and basal lamina. J Cereb Blood Flow Metab. 2011;31(12):2267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Kashi-Malina K, Cooper I, Teichberg VI. Mechanisms of glutamate efflux at the blood-brain barrier: involvement of glial cells. J Cereb Blood Flow Metab. 2012;32(1):177–89.

    Article  CAS  PubMed  Google Scholar 

  • Contreras L, Urbieta A, Kobayashi K, Saheki T, Satrustegui J. Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters. J Neurosci Res. 2010;88(5):1009–16.

    Article  CAS  PubMed  Google Scholar 

  • Cox DW, Headley MH, Watkins JC. Actions of L- and D-homocysteate in rat CNS: a correlation between low-affinity uptake and the time courses of excitation by microelectrophoretically applied L-glutamate analogues. J Neurochem. 1977;29(3):579–88.

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992;51(2):295–310.

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Ottersen OP. Sodium/potassium-coupled glutamate transporters, a “new” family of eukaryotic proteins: do they have “new” physiological roles and could they be new targets for pharmacological intervention? Prog Brain Res. 1994;100:53–60.

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int. 2016;98:29–45.

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One. 2010;5(10):e13741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Arco A, Satrustegui J. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem. 1998;273(36):23327–34.

    Article  PubMed  Google Scholar 

  • Del Arco A, Agudo M, Satrustegui J. Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem J. 2000;345(Pt 3):725–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Divino Filho JC, Barany P, Stehle P, Furst P, Bergstrom J. Free amino-acid levels simultaneously collected in plasma, muscle, and erythrocytes of uraemic patients. Nephrol Dial Transplant. 1997;12(11):2339–48.

    Article  CAS  PubMed  Google Scholar 

  • Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P. Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery. 1986;18(6):733–9.

    Article  CAS  PubMed  Google Scholar 

  • Drewes LR, Conway WP, Gilboe DD. Net amino acid transport between plasma and erythrocytes and perfused dog brain. Am J Phys. 1977;233(4):E320–5.

    CAS  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375(6532):599–603.

    Article  CAS  PubMed  Google Scholar 

  • Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem. 2002;277(22):19289–94.

    Article  CAS  PubMed  Google Scholar 

  • Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ. System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci. 2007;27(38):10094–105.

    Article  CAS  PubMed  Google Scholar 

  • Fotiadis D, Kanai Y, Palacin M. The SLC3 and SLC7 families of amino acid transporters. Mol Asp Med. 2013;34(2–3):139–58.

    Article  CAS  Google Scholar 

  • Fredriksson K, Kalimo H, Westergren I, Kahrstrom J, Johansson BB. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats. Effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol. 1987;74(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  • Gillessen T, Budd SL, Lipton SA. Excitatory amino acid neurotoxicity. Adv Exp Med Biol. 2002;513:3–40.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Turcotte LP, Kiens B, Richter EA. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. J Appl Physiol (1985). 1995;78(2):725–35.

    CAS  Google Scholar 

  • Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, et al. The vasculome of the mouse brain. PLoS One. 2012;7(12):e52665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenfeldt L, Arvidsson A. The distribution of amino acids between plasma and erythrocytes. Clin Chim Acta. 1980;100(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr. 2009;90(3):867S–74S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegedus T, Taale M. SLC tables: bioparadigms.org. 2013 [cited 2016 03-10-2016]. Available from: http://slc.bioparadigms.org/.

  • Helms HC, Madelung R, Waagepetersen HS, Nielsen CU, Brodin B. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia. 2012;60(6):882–93.

    Article  PubMed  Google Scholar 

  • Helms HC, Aldana BI, Groth S, Jensen MM, Waagepetersen HS, Nielsen CU, et al. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model. J Cereb Blood Flow Metab. 2017; doi:10.1177/271678X17690760.

  • Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci. 2013;102(9):3343–55.

    Google Scholar 

  • Hosoya K, Sugawara M, Asaba H, Terasaki T. Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem. 1999;73(3):1206–11.

    Article  CAS  PubMed  Google Scholar 

  • Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Saeki S, Kanai Y, et al. Enhancement of L-cystine transport activity and its relation to xCT gene induction at the blood-brain barrier by diethyl maleate treatment. J Pharmacol Exp Ther. 2002;302(1):225–31.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison HT, Eisenberg HM, Haber B. High-affinity transport of glutamate in rat brain microvessels. Exp Neurol. 1985;87(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  • Iijima K, Takase S, Tsumuraya K, Endo M, Itahara K. Changes in free amino acids of cerebrospinal fluid and plasma in various neurological diseases. Tohoku J Exp Med. 1978;126(2):133–50.

    Article  CAS  PubMed  Google Scholar 

  • Jackman NA, Uliasz TF, Hewett JA, Hewett SJ. Regulation of system x(c)(-)activity and expression in astrocytes by interleukin-1beta: implications for hypoxic neuronal injury. Glia. 2010;58(15):1806–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360(6403):467–71.

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Stelzner M, Nussberger S, Khawaja S, Hebert SC, Smith CP, et al. The neuronal and epithelial human high affinity glutamate transporter. Insights into structure and mechanism of transport. J Biol Chem. 1994;269(32):20599–606.

    CAS  PubMed  Google Scholar 

  • Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Asp Med. 2013;34(2–3):108–20.

    Article  CAS  Google Scholar 

  • Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, et al. Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta. 2001;1512(2):335–44.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet. 1999;22(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  • Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One. 2013;8(2):e56419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecointre M, Hauchecorne M, Chaussivert A, Marret S, Leroux P, Jegou S, et al. The efficiency of glutamate uptake differs between neonatal and adult cortical microvascular endothelial cells. J Cereb Blood Flow Metab. 2014;34(5):764–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Hawkins RA, Vina JR, Peterson DR. Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Phys. 1998;274(4 Pt 1):C1101–7.

    CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci. 1995;15(3 Pt 1):1835–53.

    CAS  PubMed  Google Scholar 

  • Leibowitz A, Boyko M, Shapira Y, Zlotnik A. Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci. 2012;13(8):10041–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LM, Warr O, Attwell D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci. 1998;18(23):9620–8.

    CAS  PubMed  Google Scholar 

  • Lin CL, Tzingounis AV, Jin L, Furuta A, Kavanaugh MP, Rothstein JD. Molecular cloning and expression of the rat EAAT4 glutamate transporter subtype. Brain Res Mol Brain Res. 1998;63(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  • Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, et al. Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab. 2009;29(9):1491–502.

    Article  CAS  PubMed  Google Scholar 

  • Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, et al. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – effects of peripheral axotomy or hindpaw inflammation. Neuroscience. 2013;248:95–111.

    Google Scholar 

  • Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev. 2003;83(1):183–252.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim DK, Inatomi J, et al. Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem. 2002;277(23):21017–26.

    Article  CAS  PubMed  Google Scholar 

  • Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, et al. Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet. 2005;76(2):334–9.

    Article  CAS  PubMed  Google Scholar 

  • Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L. Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience. 2005;133(3):667–78.

    Google Scholar 

  • Nagamori S, Wiriyasermkul P, Guarch ME, Okuyama H, Nakagomi S, Tadagaki K, et al. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci U S A. 2016;113(3):775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992;258(5082):597–603.

    Article  CAS  PubMed  Google Scholar 

  • Ni B, Rosteck PR Jr, Nadi NS, Paul SM. Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci U S A. 1994;91(12):5607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.

    Article  PubMed  Google Scholar 

  • Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Phys. 1971;221(6):1629–39.

    CAS  Google Scholar 

  • Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Phys. 1976;230(1):94–8.

    CAS  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1(5):409–17.

    Article  CAS  PubMed  Google Scholar 

  • Olsen GM, Sonnewald U. Glutamate: where does it come from and where does it go? Neurochem Int. 2015;88:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Pajecka K, Nissen JD, Stridh MH, Skytt DM, Schousboe A, Waagepetersen HS. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes. J Neurosci Res. 2015;93(7):1093–100.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med. 2013;34(2–3):465–84.

    Article  CAS  Google Scholar 

  • Pardridge W. Regulation of amino acid availability to brain: selective control mechanisms for glutamate. In: Filer Jr L, editor. Glutamic acid: advances in biochemistry and physiology. New York: Raven Press; 1979. p. 125–36.

    Google Scholar 

  • Perez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5:e992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson L, Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992;76(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992;360(6403):464–7.

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440(5):653–66.

    Article  CAS  PubMed  Google Scholar 

  • Ramos M, del Arco A, Pardo B, Martinez-Serrano A, Martinez-Morales JR, Kobayashi K, et al. Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Brain Res Dev Brain Res. 2003;143(1):33–46.

    Google Scholar 

  • Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Asp Med. 2013;34(2–3):350–9.

    Article  CAS  Google Scholar 

  • Roberts RC, Roche JK, McCullumsmith RE. Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience. 2014;277C:522–40.

    Article  CAS  Google Scholar 

  • Robinson MB, Jackson JG. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int. 2016;98:56–71.

    Article  CAS  PubMed  Google Scholar 

  • Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR. Glutamate transporter coupling to Na,K-ATPase. J Neurosci. 2009;29(25):8143–55.

    Article  CAS  PubMed  Google Scholar 

  • Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci. 1984;4(7):1884–91.

    CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  • Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sershen H, Lajtha A. Capillary transport of amino acids in the developing brain. Exp Neurol. 1976;53(2):465–74.

    Article  CAS  PubMed  Google Scholar 

  • Shashidharan P, Huntley GW, Meyer T, Morrison JH, Plaitakis A. Neuron-specific human glutamate transporter: molecular cloning, characterization and expression in human brain. Brain Res. 1994;662(1–2):245–50.

    Article  CAS  PubMed  Google Scholar 

  • Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41.

    Article  CAS  PubMed  Google Scholar 

  • Skytt DM, Klawonn AM, Stridh MH, Pajecka K, Patruss Y, Quintana-Cabrera R, et al. siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochem Int. 2012;61(4):490–7.

    Article  CAS  PubMed  Google Scholar 

  • Spink DC, Swann JW, Snead OC, Waniewski RA, Martin DL. Analysis of aspartate and glutamate in human cerebrospinal fluid by high-performance liquid chromatography with automated precolumn derivatization. Anal Biochem. 1986;158(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992;89(22):10955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamori S, Malherbe P, Broger C, Jahn R. Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep. 2002;3(8):798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Qu H, Sonnewald U, Shimamoto K, Schousboe A. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem Int. 2005;47(1–2):92–102.

    Article  CAS  PubMed  Google Scholar 

  • Westergaard N, Sonnewald U, Unsgard G, Peng L, Hertz L, Schousboe A. Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. J Neurochem. 1994;62(5):1727–33.

    Article  CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383(6601):634–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Mably AJ, Walsh DM, Rowan MJ. Peripheral interventions enhancing brain glutamate homeostasis relieve amyloid beta- and TNFalpha- mediated synaptic plasticity disruption in the rat hippocampus. Cereb Cortex 2016:1–12. doi: 10.1093/cercor/bhw193.

  • Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014;121(8):799–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol. 2009;21(3):235–41.

    Article  PubMed  Google Scholar 

  • Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Brodin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Helms, H.C.C., Nielsen, C.U., Waagepetersen, H.S., Brodin, B. (2017). Glutamate Transporters in the Blood-Brain Barrier. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_15

Download citation

Publish with us

Policies and ethics