Skip to main content

Manganese Control of Glutamate Transporters’ Gene Expression

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

Manganese (Mn) is an essential trace element, serving as a cofactor for several enzymes involved in various cellular and biochemical reactions in human body. However, chronic overexposure to Mn from occupational or environmental sources induces a neurological disorder, characterized by psychiatric, cognitive, and motor abnormalities, referred to as manganism. Mn-induced neurotoxicity is known to target astrocytes since these cells preferentially accumulate Mn. Astrocytes are the most abundant non-neuronal glial cells in the brain, and they play a critical role in maintaining the optimal glutamate levels to prevent excitotoxic death. The fine regulation of glutamate in the brain is accomplished by two major glutamate transporters – glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST) that are predominantly expressed in astrocytes. Excitotoxic neuronal injury has been demonstrated as a critical mechanism involved in Mn neurotoxicity and implicated in the pathological signs of multiple neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Recent evidences also establish that Mn directly deregulates the expression and function of both astrocytic glutamate transporters by decreasing mRNA and protein levels of GLT-1 and GLAST. Herein, we will review the mechanisms of Mn-induced gene regulation of glutamate transporters at the transcriptional level and their role in Mn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner SD, Norris CM. Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci Off J Soc Neurosci. 2009;29:12957–69.

    Article  Google Scholar 

  • Aguirre G, Rosas S, Lopez-Bayghen E, Ortega A. Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int. 2008;52:1322–31.

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull. 1994;33:345–9.

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Gannon M, Kimelberg HK. Manganese uptake and efflux in cultured rat astrocytes. J Neurochem. 1992;58:730–5.

    Article  CAS  PubMed  Google Scholar 

  • Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology. 2008;29:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltan S, Murphy SP, Danilov CA, Bachleda A, Morrison RS. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci. 2011;31:3990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardai FH, D’Mello SR. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci. 2011;31:1746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bast-Pettersen R, Ellingsen DG, Hetland SM, Thomassen Y. Neuropsychological function in manganese alloy plant workers. Int Arch Occup Environ Health. 2004;77:277–87.

    Article  CAS  PubMed  Google Scholar 

  • Bentle LA, Lardy HA. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem. 1976;251:2916–21.

    CAS  PubMed  Google Scholar 

  • Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH Jr, Trotti D. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem. 2006;281:14076–84.

    Article  CAS  PubMed  Google Scholar 

  • Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, Koller W, Bowler RP, Mergler D, Bouchard M, Smith D, Gwiazda R, Doty RL. Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med. 2007;64:167–77.

    Article  CAS  PubMed  Google Scholar 

  • Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol. 2011;25:191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol. 1993;120:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Liao SL. Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol. 2002;175:216–25.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chakraborty S, Peres TV, Bowman AB, Aschner M. Manganese-induced neurotoxicity: from to humans. Toxicol Res. 2015;4:191–202.

    Article  CAS  Google Scholar 

  • Conradt M, Stoffel W. Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem. 1997;68:1244–51.

    Article  CAS  PubMed  Google Scholar 

  • Cordova FM, Aguiar AS Jr, Peres TV, Lopes MW, Goncalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RD, Erikson KM, Aschner M, Leal RB. In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One. 2012;7:e33057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Xu Z, Xu B, Xu D, Tian Y, Feng W. The protective effects of riluzole on manganese-induced disruption of glutamate transporters and glutamine synthetase in the cultured astrocytes. Biol Trace Elem Res. 2012;148:242–9.

    Article  CAS  PubMed  Google Scholar 

  • Diez AM, Campo ML, Soler G. Trypsin digestion of arginase: evidence for a stable conformation manganese directed. Int J Biochem. 1992;24:1925–32.

    Article  CAS  PubMed  Google Scholar 

  • Erikson K, Aschner M. Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology. 2002;23:595–602.

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dobson AW, Dorman DC, Aschner M. Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ. 2004;334–335:409–16.

    Article  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M. Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res. 2006;111:199–215.

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M. Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol Sci. 2007;97:459–66.

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M. Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology. 2008;29:377–85.

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics. 2012;4:700–8.

    Article  CAS  PubMed  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE. Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol. 1992;115:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology. 1999;20:445–53.

    CAS  PubMed  Google Scholar 

  • Ghosh M, Yang Y, Rothstein JD, Robinson MB. Nuclear factor-kappaB contributes to neuron-dependent induction of glutamate transporter-1 expression in astrocytes. J Neurosci. 2011;31:9159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez LE, Juknat AA, Venosa AJ, Verrengia N, Kotler ML. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family. Neurochem Int. 2008;53:408–15.

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Norenberg MD. Manganese decreases glutamate uptake in cultured astrocytes. Neurochem Res. 1997;22:1443–7.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Yepez S, Vega M, Garban H, Bonavida B. Involvement of the TNF-alpha autocrine-paracrine loop, via NF-kappaB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. Clin Immunol. 2006;120:297–309.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Oh-Hashi K, Kiuchi K, Hirata Y. p44/42 MAP kinase and c-Jun N-terminal kinase contribute to the up-regulation of caspase-3 in manganese-induced apoptosis in PC12 cells. Brain Res. 2006;1099:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Sakata M, Watanabe M, Aikawa Y, Fujii H. The entry of manganese ions into the brain is accelerated by the activation of N-methyl-D-aspartate receptors. Neuroscience. 2008;154:732–40.

    Article  CAS  PubMed  Google Scholar 

  • Janssen C, Schmalbach S, Boeselt S, Sarlette A, Dengler R, Petri S. Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2010;69:573–81.

    Article  CAS  PubMed  Google Scholar 

  • Kalandadze A, Wu Y, Robinson MB. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486. J Biol Chem. 2002;277:45741–50.

    Article  CAS  PubMed  Google Scholar 

  • Karki P, Webb A, Smith K, Lee K, Son DS, Aschner M, Lee E. cAMP response element-binding protein (CREB) and nuclear factor kappaB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J Biol Chem. 2013;288:28975–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karki P, Webb A, Smith K, Johnson J Jr, Lee K, Son DS, Aschner M, Lee E. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014a;34:1280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E. Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia. 2014b;62:1270–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E. Transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) via NF-kappaB and Yin Yang 1 (YY1). J Biol Chem. 2015;290:23725–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Choi SY, Chao W, Volsky DJ. Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes. J Neurochem. 2003;87:1485–98.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG. Activation of protein kinase C delta by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochem Pharmacol. 2005;69:133–46.

    Article  CAS  PubMed  Google Scholar 

  • Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12:7519–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313:46–55.

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem. 2008;283:13116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ES, Sidoryk M, Jiang H, Yin Z, Aschner M. Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem. 2009;110:530–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, Yoo BK, Sarkar D, Kim SH, Kang DC, Fisher PB. Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res. 2011;71:6514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia. 2012;60:1024–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leng Y, Marinova Z, Reis-Fernandes MA, Nau H, Chuang DM. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci Lett. 2010;476:127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes S, Riojas-Rodriguez H, Sabido-Pedraza E, Rios C. Biomarkers of manganese exposure in a population living close to a mine and mineral processing plant in Mexico. Environ Res. 2008;106:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Morello M, Canini A, Mattioli P, Sorge RP, Alimonti A, Bocca B, Forte G, Martorana A, Bernardi G, Sancesario G. Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats: an electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology. 2008;29:60–72.

    Article  CAS  PubMed  Google Scholar 

  • Mutkus L, Aschner JL, Fitsanakis V, Aschner M. The in vitro uptake of glutamate in GLAST and GLT-1 transfected mutant CHO-K1 cells is inhibited by manganese. Biol Trace Elem Res. 2005;107:221–30.

    Article  CAS  PubMed  Google Scholar 

  • Peres TV, Pedro DZ, de Cordova FM, Lopes MW, Goncalves FM, Mendes-de-Aguiar CB, Walz R, Farina M, Aschner M, Leal RB. In vitro manganese exposure disrupts MAPK signaling pathways in striatal and hippocampal slices from immature rats. Biomed Res Int. 2013;2013:769295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacol. 2010;35:792–805.

    Article  CAS  Google Scholar 

  • Potter MC, Figuera-Losada M, Rojas C, Slusher BS. Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol. 2013;8:594–607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci. 2001;21:1876–83.

    CAS  PubMed  Google Scholar 

  • Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L. Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson’s disease. Eur J Neurosci. 2004;20:1255–66.

    Article  CAS  PubMed  Google Scholar 

  • Rosas S, Vargas MA, Lopez-Bayghen E, Ortega A. Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1. J Neurochem. 2007;101:1134–44.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev. 2006;7:194–206.

    Article  CAS  Google Scholar 

  • Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta. 1997;1332:F49–66.

    CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Aschner M. Manganese toxicity in the central nervous system: the glutamine/glutamate-gamma-aminobutyric acid cycle. J Intern Med. 2013;273:466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E, Mingwei N, Aschner M. Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia. 2011;59:1732–43.

    Article  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E, Aschner M. Mechanism of Mn(II)-mediated dysregulation of glutamine-glutamate cycle: focus on glutamate turnover. J Neurochem. 2012;122:856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitcheran R, Gupta P, Fisher PB, Baldwin AS. Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J. 2005;24:510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadoni F, Stefani A, Morello M, Lavaroni F, Giacomini P, Sancesario G. Selective vulnerability of pallidal neurons in the early phases of manganese intoxication. Exp Brain Res. 2000;135:544–51.

    Article  CAS  PubMed  Google Scholar 

  • Stallings WC, Metzger AL, Pattridge KA, Fee JA, Ludwig ML. Structure-function relationships in iron and manganese superoxide dismutases. Free Radic Res Commun. 1991;12–13(Pt 1):259–68.

    Article  Google Scholar 

  • Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB. Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A. 2003;100:1955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda A. Manganese action in brain function. Brain Res. 2003;41:79–87.

    Article  CAS  Google Scholar 

  • Wedler FC, Denman RB. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul. 1984;24:153–69.

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M. Agency for Toxic Substances and Disease Registry (ATSDR) toxicological profiles. In: Toxicological profile for manganese. Atlanta: Agency for Toxic Substances and Disease Registry (US); 2012.

    Google Scholar 

  • Xu B, Xu ZF, Deng Y. Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Exp Toxicol Pathol. 2010a;62:381–90.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jia K, Xu B, He A, Li J, Deng Y, Zhang F. Effects of MK-801, taurine and dextromethorphan on neurotoxicity caused by manganese in rats. Toxicol Ind Health. 2010b;26:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Xu ZF, Deng Y. Manganese exposure alters the expression of N-methyl-D-aspartate receptor subunit mRNAs and proteins in rat striatum. J Biochem Mol Toxicol. 2010c;24:1–9.

    Article  PubMed  Google Scholar 

  • Yanagisawa M, Aida T, Takeda T, Namekata K, Harada T, Shinagawa R, Tanaka K. Arundic acid attenuates retinal ganglion cell death by increasing glutamate/aspartate transporter expression in a model of normal tension glaucoma. Cell Death Dis. 2015;6:e1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Aschner JL, dos Santos AP, Aschner M. Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res. 2008;1203:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci. 2009;107:156–64.

    Article  CAS  PubMed  Google Scholar 

  • Zschocke J, Allritz C, Engele J, Rein T. DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia. 2007;55:663–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

MA was supported in part by NIH grants, R01 ES 010563, R01 ES 003771, and R01 ES 020852. EL was supported in part by NIH grants, NIGMS SC1089630 and R01 ES024756.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunsook Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, E., Karki, P., Johnson, J., Hong, P., Aschner, M. (2017). Manganese Control of Glutamate Transporters’ Gene Expression. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_1

Download citation

Publish with us

Policies and ethics