Skip to main content

Recovering Missing Values from Corrupted Spatio-Temporal Sensory Data via Robust Low-Rank Tensor Completion

  • Conference paper
  • First Online:
Book cover Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10177))

Included in the following conference series:

Abstract

With the booming of the Internet of Things, tremendous amount of sensors have been installed in different geographic locations, generating massive sensory data with both time-stamps and geo-tags. Such type of data usually have shown complex spatio-temporal correlation and are easily missing in practice due to communication failure or data corruption. In this paper, we aim to tackle the challenge – how to accurately and efficiently recover the missing values for corrupted spatio-temporal sensory data. Specifically, we first formulate such sensor data as a high-dimensional tensor that can naturally preserve sensors’ both geographical and time information, thus we call spatio-temporal Tensor. Then we model the sensor data recovery as a low-rank robust tensor completion problem by exploiting its latent low-rank structure and sparse noise property. To solve this optimization problem, we design a highly efficient optimization method that combines the alternating direction method of multipliers and accelerated proximal gradient to minimize the tensor’s convex surrogate and noise’s \(\ell _1\)-norm. In addition to testing our method by a synthetic dataset, we also use passive RFID (radio-frequency identification) sensors to build a real-world sensor-array testbed, which generates overall 115,200 sensor readings for model evaluation. The experimental results demonstrate the accuracy and robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rank of a matrix is often linked to the order, complexity, or dimensionality of the underlying system, which tends to be much smaller than the data size.

  2. 2.

    We assume the additive noises are sufficiently sparse relative to the data tensor \(\mathcal {O}\).

  3. 3.

    www.dropbox.com/s/mcqqpxc6m0b5jyn/Appendix.pdf?dl=0.

  4. 4.

    Available in www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html.

  5. 5.

    Available in http://sun.stanford.edu/~rmunk/PROPACK/.

  6. 6.

    Available in au.mathworks.com/help/curvefit/smoothing-data.html.

  7. 7.

    Available in www.cis.pku.edu.cn/faculty/vision/zlin/RPCA+MC_codes.zip.

  8. 8.

    Available in www.cs.rochester.edu/u/jliu/code/TensorCompletion.zip.

  9. 9.

    Available in  https://github.com/ryotat/tensor.

  10. 10.

    In each iteration, all the tensor completion based methods require to calculate 3 times SVD that is most time-consuming computation task so we use iteration number as evaluation metric for computation time.

  11. 11.

    We collect over all one hour’s RSS readings, the sampling rate is 2 Hz. During the data collection, a participant is doing various activities between the RFID sensor-array and reader, including walking, sitting, standing, lying down as well as falling down etc. By doing so, the collected RSSI reading will reveal different patterns.

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemometr. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Jalali, A., Sanghavi, S., Caramanis, C.: Low-rank matrix recovery from errors and erasures. IEEE Trans. Info. Theor. 59(7), 4324–4337 (2013)

    Article  Google Scholar 

  7. Chen, Y., Xu, H., Caramanis, C., Sanghavi, S.: Robust matrix completion with corrupted columns. arXiv preprint (2011). arXiv:1102.2254

  8. Da Silva, C., Herrmann, F.J.: Hierarchical tucker tensor optimization-applications to tensor completion. In: Proceedings of 10th International Conference on Sampling Theory and Applications (2013)

    Google Scholar 

  9. Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  10. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob. 27(2), 025010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grewal, M.S.: Kalman Filtering. Springer, Heidelberg (2011)

    Book  Google Scholar 

  13. Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 50–57. IEEE (2005)

    Google Scholar 

  14. Hsieh, H.P., Lin, S.D., Zheng, Y.: Inferring air quality for station location recommendation based on urban big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 437–446 (2015)

    Google Scholar 

  15. Ji, H., Huang, S., Shen, Z., Xu, Y.: Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imaging Sci. 4(4), 1122–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kreimer, N., Stanton, A., Sacchi, M.D.: Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction. Geophysics 78(6), V273–V284 (2013)

    Article  Google Scholar 

  18. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawrance, A., Lewis, P.: An exponential moving-average sequence and point process. J. Appl. Probab. 14, 98–113 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint (2010). arXiv:1009.5055

  21. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2114–2121. IEEE (2009)

    Google Scholar 

  22. Norcia, A.M., Clarke, M., Tyler, C.W.: Digital filtering and robust regression techniques for estimating sensory thresholds from the evoked potential. IEEE Eng. Med. Biol. Mag. 4(4), 26–32 (1985)

    Article  Google Scholar 

  23. Ruan, W., Sheng, Q.Z., Yao, L., Gu, T., Ruta, M., Shangguan, L.: Device-free indoor localization and tracking through human-object interactions. In: 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2016)

    Google Scholar 

  24. Ruan, W., Xu, P., Sheng, Q.Z., Tran, N.K., Falkner, N.J., Li, X., Zhang, W.E.: When sensor meets tensor: filling missing sensor values through a tensor approach. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2025–2028. ACM (2016)

    Google Scholar 

  25. Ruan, W., Yao, L., Sheng, Q.Z., Falkner, N., Li, X., Gu, T.: TagFall: towards unobstructive fine-grained fall detection based on UHF passive RFID tags. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 140–149 (2015)

    Google Scholar 

  26. Sakurai, Y., Matsubara, Y., Faloutsos, C.: Mining and forecasting of big time-series data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 919–922. ACM (2015)

    Google Scholar 

  27. Signoretto, M., De Lathauwer, L., Suykens, J.A.: Nuclear norms for tensors and their use for convex multilinear estimation. Linear Algebra Appl. 43 (2010)

    Google Scholar 

  28. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 374–383. ACM (2006)

    Google Scholar 

  29. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(615–640), 15 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex optimization. arXiv preprint (2010). arXiv:1010.0789

  31. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, pp. 2080–2088 (2009)

    Google Scholar 

  32. Xiuwen Yi, Y., Zheng, J.: ST-MVL: filling missing values in geo-sensory time series data. In: IJCAI 2016 (2016)

    Google Scholar 

  33. Yao, L., Ruan, W., Sheng, Q.Z., Li, X., Falkner, N.J.: Exploring tag-free RFID-based passive localization and tracking via learning-based probabilistic approaches. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1799–1802. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ruan, W., Xu, P., Sheng, Q.Z., Falkner, N.J.G., Li, X., Zhang, W.E. (2017). Recovering Missing Values from Corrupted Spatio-Temporal Sensory Data via Robust Low-Rank Tensor Completion. In: Candan, S., Chen, L., Pedersen, T., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10177. Springer, Cham. https://doi.org/10.1007/978-3-319-55753-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55753-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55752-6

  • Online ISBN: 978-3-319-55753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics