Skip to main content

Melody Retrieval and Classification Using Biologically-Inspired Techniques

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

  • 2125 Accesses

Abstract

Retrieval and classification are at the center of Music Information Retrieval research. Both tasks rely on a method to assess the similarity between two music documents. In the context of symbolically encoded melodies, pairwise alignment via dynamic programming has been the most widely used method. However, this approach fails to scale-up well in terms of time complexity and insufficiently models the variance between melodies of the same class. Compact representations and indexing techniques that capture the salient and robust properties of music content, are increasingly important. We adapt two existing bioinformatics tools to improve the melody retrieval and classification tasks. On two datasets of folk tunes and cover song melodies, we apply the extremely fast indexing method of the Basic Local Alignment Search Tool (BLAST) and achieve comparable classification performance to exhaustive approaches. We increase retrieval performance and efficiency by using multiple sequence alignment algorithms for locating variation patterns and profile hidden Markov models for incorporating those patterns into a similarity model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  3. Bairoch, A.: Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19(Suppl), 2241 (1991)

    Article  Google Scholar 

  4. Bertin-Mahieux, T., Ellis, D.P.W.: Large-scale cover song recognition using hashed chroma landmarks. In: Applications of Signal Processing to Audio and Acoustics, pp. 117–120 (2011)

    Google Scholar 

  5. Boot, P., Volk, A., de Haas, W.B.: Evaluating the role of repeated patterns in folk song classification and compression. J. New Music Res. 1–16 (2016)

    Google Scholar 

  6. Bountouridis, D., Koops, H.V., Wiering, F., Veltkamp, R.C.: Music outlier detection using multiple sequence alignment and independent ensembles. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 286–300. Springer, Cham (2016). doi:10.1007/978-3-319-46759-7_22

    Chapter  Google Scholar 

  7. Bountouridis, D., Van Balen, J.: The cover song variation dataset. In: The International Workshop on Folk Music Analysis (2014)

    Google Scholar 

  8. Carroll, H., Clement, M.J., Ridge, P., Snell, Q.O.: Effects of gap open and gap extension penalties. In: The Biotechnology and Bioinformatics Symposium, pp. 19–23 (2006)

    Google Scholar 

  9. Casey, M., Slaney, M.: Fast recognition of remixed music audio. In: Acoustics, Speech and Signal Processing, vol. 4, p. IV-1425 (2007)

    Google Scholar 

  10. Chai, W., Vercoe, B.: Folk music classification using hidden Markov models. In: International Conference on Artificial Intelligence, number 6 in 4. Citeseer (2001)

    Google Scholar 

  11. Day, W.H.E., McMorris, F.R.: Threshold consensus methods for molecular sequences. J. Theor. Biol. 159(4), 481–489 (1992)

    Article  Google Scholar 

  12. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role of source dependence. Proc. VLDB Endowment 2(1), 550–561 (2009)

    Article  Google Scholar 

  13. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  14. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)

    Article  Google Scholar 

  15. Finn, R.D., Clements, J., Eddy, S.R.: Hmmer web server: interactive sequence similarity searching. Nucleic Acids Res. gkr367 (2011)

    Google Scholar 

  16. Gómez, E., Klapuri, A., Meudic, B.: Melody description and extraction in the context of music content processing. J. New Music Res. 32(1), 23–40 (2003)

    Article  Google Scholar 

  17. Hillewaere, R., Manderick, B., Conklin, D.: Alignment methods for folk tune classification. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery, pp. 369–377. Springer, Cham (2014)

    Chapter  Google Scholar 

  18. Hogeweg, P., Hesper, B.: The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J. Mol. Evol. 20(2), 175–186 (1984)

    Article  Google Scholar 

  19. Hu, N., Dannenberg, R.B., Tzanetakis, G.: Polyphonic audio matching and alignment for music retrieval. Computer Science Department, p. 521 (2003)

    Google Scholar 

  20. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002)

    Article  Google Scholar 

  21. Kemena, C., Notredame, C.: Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25(19), 2455–2465 (2009)

    Article  Google Scholar 

  22. Kilian, J., Hoos, H.H.: Musicblast-gapped sequence alignment for MIR. In: International Society for Music Information Retrieval Conference, pp. 38–41 (2004)

    Google Scholar 

  23. Kim, S., Narayanan, S.: Dynamic chroma feature vectors with applications to cover song identification. In: Multimedia Signal Processing, pp. 984–987 (2008)

    Google Scholar 

  24. Koops, H.V., de Haas, W.B., Bountouridis, D., Volk, A.: Integration and quality assessment of heterogeneous chord sequences using data fusion. In: International Society for Music Information Retrieval Conference, pp. 178–184 (2016)

    Google Scholar 

  25. Krogh, A.: An introduction to hidden Markov models for biological sequences. New Compr. Biochem. 32, 45–63 (1998)

    Article  MATH  Google Scholar 

  26. Krogh, A., Brown, M., Saira Mian, I., Sjölander, K., Haussler, D.: Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235(5), 1501–1531 (1994)

    Article  Google Scholar 

  27. Malt, B.C.: An on-line investigation of prototype and exemplar strategies in classification. J. Exp. Psychol. Learn. Mem. Cogn. 15(4), 539 (1989)

    Article  Google Scholar 

  28. Margulis, E.H.: Musical repetition detection across multiple exposures. Music Percept. Interdisc. J. 29(4), 377–385 (2012)

    Article  Google Scholar 

  29. Martin, B., Brown, D.G., Hanna, P., Ferraro, P.: Blast for audio sequences alignment: a fast scalable cover identification. In: International Society for Music Information Retrieval Conference, pp. 529–534 (2012)

    Google Scholar 

  30. Müller, M., Mattes, H., Kurth, F.: An efficient multiscale approach to audio synchronization. In: International Society for Music Information Retrieval Conference, pp. 192–197. Citeseer (2006)

    Google Scholar 

  31. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  32. Pampalk, E.: Computational models of music similarity and their application in music information retrieval. na (2006)

    Google Scholar 

  33. Ratanamahatana, C.A., Keogh, E.: Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data, pp. 1–11. Citeseer (2004)

    Google Scholar 

  34. Serra, J., Gómez, E., Herrera, P., Serra, X.: Chroma binary similarity and local alignment applied to cover song identification. IEEE Trans. Audio Speech Lang. Process. 16(6), 1138–1151 (2008)

    Article  Google Scholar 

  35. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  36. Temperley, D.: Bayesian models of musical structure and cognition. Musicae Sci. 8(2), 175–205 (2004)

    Article  Google Scholar 

  37. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  38. van Kranenburg, P.: A computational approach to content-based retrieval of folk song melodies. Ph.D. thesis, Utrecht University (2010)

    Google Scholar 

  39. van Kranenburg, P., de Bruin, M., Grijp, L., Wiering, F.: The Meertens tune collections. In: Meertens Online Reports (2014)

    Google Scholar 

  40. Volk, A., Haas, W.B., Van Kranenburg, P.: Towards modelling variation in music as foundation for similarity. In: Proceedings of the 12th International Conference on Music Perception and Cognition (2012)

    Google Scholar 

  41. Volk, A., Van Kranenburg, P.: Melodic similarity among folk songs: an annotation study on similarity-based categorization in music. Musicae Sci. 16, 317–339 (2012). page 1029864912448329

    Article  Google Scholar 

  42. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1(4), 337–348 (1994)

    Article  Google Scholar 

  43. Wang, S., Ewert, S., Dixon, S.: Robust joint alignment of multiple versions of a piece of music. In: International Society for Music Information Retrieval, pp. 83–88 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bountouridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bountouridis, D., Brown, D., Koops, H.V., Wiering, F., Veltkamp, R.C. (2017). Melody Retrieval and Classification Using Biologically-Inspired Techniques. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics