Skip to main content

Physiological and Molecular Mechanisms and Adaptation Strategies in Soybean (Glycine max) Under Phosphate Deficiency

  • Chapter
  • First Online:
Legume Nitrogen Fixation in Soils with Low Phosphorus Availability

Abstract

Phosphorus is a major plant macronutrient involved in many and different biological processes, such as energy transfer (ATP), photosynthesis, respiration, biosynthesis of nucleic acids and proteins, membrane biosynthesis (e.g., phospholipids), and signaling pathways. Legumes, including soybean, are highly dependent on the availability of scarcely available organic phosphorus in the rhizosphere, especially when considering the need for phosphorous during nodulation—a legume-specific mutualistic symbiotic interaction between plants and nitrogen-fixing soil bacteria. As a consequence, the limited assimilation of phosphorus greatly hinders the nodulation process, soybean growth and soybean yield. Thus, understanding how soybean responds to low-phosphorus situations is imperative for breeding towards low-phosphorus tolerance. Toward these aims, scientists are using powerful genetic and molecular technologies to identify soybean genes playing essential roles in plant resistance to low-phosphorus environments. Functional genomic studies on soybean, as well as on other legumes suitable for comparative genomic with soybean, have provided valuable information in recent years and hold bright promise for the future. In this chapter, taking advantage of the recent development of high-throughput sequencing technologies, the sequencing of the soybean genome, the development a various biotechnological and breeding platforms, and the molecular, cellular and physiological analyses of soybean response to phosphate (Pi) deprivation, we describe our current understanding of the adaptation of soybean plants to limited Pi availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton M et al (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098

    Article  PubMed  Google Scholar 

  • Abdel-Fattah GM, Asrar AAA-A, Al-Amri SM, Abdel-Salam EM (2014) Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica 52(4):581–588

    Article  CAS  Google Scholar 

  • Agrawal GK et al (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148(1):504–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkharouf NW, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 115:247–258

    Article  CAS  PubMed  Google Scholar 

  • Almeida JP et al (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.) J Exp Bot 51(348):1289–1297

    CAS  PubMed  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78

    Article  CAS  Google Scholar 

  • AraĂşjo AP, Plassard C, Drevon JJ (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312(1):129–138

    Article  CAS  Google Scholar 

  • Asakura T et al (2012) Global gene expression profiles in developing soybean seeds. Plant Physiol Biochem 52:147–153

    Article  CAS  PubMed  Google Scholar 

  • Baird NA et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu P, Zhang YJ, Lynch JP, Brown KM (2007) Ethylene modulates genetic, positional, and nutritionalregulation of root plagiogravitropism. Funct Plant Biol 34:41–51

    Article  CAS  Google Scholar 

  • Beissinger TM et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193(4):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Borch K et al (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22(4):425–431

    Article  CAS  Google Scholar 

  • Brechenmacher L et al (2009) Establishment of a protein reference map for soybean root hair cells. Plant Physiol 149(2):670–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechenmacher L et al (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153(4):1808–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechenmacher L et al (2012) Identification of soybean proteins from a single cell type: the root hair. Proteomics 12(22):3365–3373

    Article  CAS  PubMed  Google Scholar 

  • Broughton W et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brown LK et al (2013) A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann Bot 112(2):317–330

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53(374):1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247(1):3–24

    Article  CAS  Google Scholar 

  • Cannon SB et al (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS One 5(7):e11630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carswell C et al (1996) The fungicide Phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol 110(1):105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary MI et al (2008) The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol Plant 30(4):537–544

    Article  CAS  Google Scholar 

  • Chen Z et al (2011) Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11(24):4648–4659

    Article  CAS  PubMed  Google Scholar 

  • Clarke VC et al (2015) Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 14(5):1301–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9(5–6):416–423

    Article  CAS  PubMed  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of Proteoid roots and other root clusters. Bot Acta 108(3):183–200

    Article  Google Scholar 

  • Elshire RJ et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C et al (2013) The pattern of phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biol 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594

    Article  CAS  Google Scholar 

  • Gill N et al (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151(3):1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5(2):56–60

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Weeks R et al (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116(Pt 15):3135–3144

    Article  CAS  PubMed  Google Scholar 

  • Gore MA et al (2002) Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean. Genome 45(3):592–599

    Article  CAS  PubMed  Google Scholar 

  • Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soybean. Theor Appl Genet 88(3–4):429–432

    CAS  PubMed  Google Scholar 

  • Graham M et al (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species. Funct Plant Biol 33:789–797

    Article  CAS  Google Scholar 

  • Grant D et al (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38(Database issue):D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Guo WB, Zhang LN, Zhao J, Liao H, Zhuang CX, Yan XL (2008) Identification of temporally and spatially phosphate-starvation responsive genes in Glycine max. Plant Sci 175:574–584

    Article  CAS  Google Scholar 

  • Guo W et al (2011) A soybean beta-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66(3):541–552

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Gonzalez JJ et al (2011) Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet 123(8):1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M et al (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141(1):32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Hernandez G et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144(2):752–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez G et al (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151(3):1221–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195

    Article  CAS  Google Scholar 

  • Hoekenga OA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103(25):9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffland E, Findeneg G, Nelemans JA (1989) Utilization of rock phosphate by rape. Plant Soil 113:155–160

    Article  CAS  Google Scholar 

  • Hyten DL, Choi IY, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumali LK, Cregan PB (2010a) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50(3):960–968

    Article  CAS  Google Scholar 

  • Hyten DL et al (2010b) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ithal N et al (2007a) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant-Microbe Interact 20(3):293–305

    Article  CAS  PubMed  Google Scholar 

  • Ithal N et al (2007b) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol Plant-Microbe Interact 20(5):510–525

    Article  CAS  PubMed  Google Scholar 

  • JarquĂ­n D et al (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15(1):1–10

    Article  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007a) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30(3):310–322

    Article  CAS  PubMed  Google Scholar 

  • Javot H et al (2007b) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104(5):1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J et al (2012) Phosphorus supply enhances the response of legumes to elevated CO2. Plant Soil 358(1–2):91–104

    Article  CAS  Google Scholar 

  • Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah S, Govind SR, Tran LS (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33(1):23–39

    Article  PubMed  Google Scholar 

  • Johnston A, Steen I (2000) Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers Association, Brussels

    Google Scholar 

  • Jones SI, Vodkin LO (2013) Using RNA-seq to profile soybean seed development from fertilization to maturity. PLoS One 8(3):e59270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi T et al (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics 13(Suppl 1):S15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi T et al (2014) Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucleic Acids Res 42(Database issue):D1245–D1252

    Article  CAS  PubMed  Google Scholar 

  • Keim P et al (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126(3):735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kim H-J, Lynch JP, Brown KM (2008) Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. Plant Cell Environ 31(12):1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Matthews BF (2009) Emerging approaches to broaden resistance of soybean to soybean cyst nematode as supported by gene expression studies. Plant Physiol 151(3):1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink VP et al (2007) A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta 226(6):1423–1447

    Article  CAS  PubMed  Google Scholar 

  • Klink VP et al (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230(1):53–71

    Article  CAS  PubMed  Google Scholar 

  • Klink VP et al (2010) The application of a developmental genomics approach to study the resistant reaction of soybean to the soybean cyst nematode. Nematropica 40(1):1–11

    Google Scholar 

  • Klink VP et al (2011) Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Plant Mol Biol 75(1–2):141–165

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Koide R, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    Article  CAS  Google Scholar 

  • Koonin EV, Makarova KS (2009) CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep 1:95

    PubMed  PubMed Central  Google Scholar 

  • Krishnan, H.B., N.W. Oehrle, and S.S. Natarajan, A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics, 2009. 9(11):3174–313188.

    Google Scholar 

  • Lambers H et al (2011) Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiol 156(3):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux MR et al (2006) Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules. New Phytol 169(2):399–408

    Article  PubMed  CAS  Google Scholar 

  • Le Roux MR, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48(1):102–109

    Article  Google Scholar 

  • Li Y, Wang Y, Tong Y, Gao J, Zhang J, Chen S (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.) Euphytica 142(1–2):137–142

    Article  CAS  Google Scholar 

  • Li H et al (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153(4):1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B et al (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics 15:1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X et al (2015) GmEXPB2, a Cell Wall beta-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169(4):2640–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang QA et al (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106(1):223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C et al (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161(3):1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H et al (2014) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127(10):2127–2137

    Article  CAS  PubMed  Google Scholar 

  • Libault M et al (2010a) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63(1):86–99

    CAS  PubMed  Google Scholar 

  • Libault M et al (2010b) Root hair systems biology. Trends Plant Sci 15(11):641–650

    Article  CAS  PubMed  Google Scholar 

  • Libault M et al (2010c) Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152(2):541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M et al (2010d) Soybean root hairs: a valuable system to investigate plant biology at the cellular level. Plant Signal Behav 5(4):419–421

    Article  PubMed  Google Scholar 

  • LĂłpez-Arredondo DL et al (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65(1):95–123

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53(4):661–673

    Article  CAS  PubMed  Google Scholar 

  • Lyons E et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148(4):1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, D., et al., Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet, 2015. 128(7):1359–131371.

    Google Scholar 

  • Matsye PD et al (2011) Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 77(4–5):513–528

    Article  CAS  PubMed  Google Scholar 

  • Mazarei M et al (2011) Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet 123(7):1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Meng L et al (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339

    Google Scholar 

  • Miguel M (2011) Functional role and synergistic effect of root traits for phosphorus acquisition efficiency and their genetic basis in common bean (Phaseolus vulgaris L.). PhD thesis, The Pennsylvania State University, University Park

    Google Scholar 

  • Miller MR et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17(2):240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura, K., et al., The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA, 2005. 102(21):7760–7767765.

    Google Scholar 

  • Mooney, B.P., H.B. Krishnan, and J.J. Thelen, High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. Phytochemistry, 2004. 65(12):1733–171744.

    Google Scholar 

  • Nguyen TH et al (2012) Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cell Proteomics 11(11):1140–1155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52(355):329–339

    Article  CAS  PubMed  Google Scholar 

  • Niu YF et al (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112(2):391–408

    Article  CAS  PubMed  Google Scholar 

  • Ohyanagi H, Sakata K, Komatsu S (2012) Soybean proteome database 2012: update on the comprehensive data repository for soybean proteomics. Front Plant Sci 3:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y et al (2013) A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 4:1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okazaki Y et al (2015) Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol Plant 155(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Olivera M et al (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121(3):498–505

    Article  CAS  Google Scholar 

  • Penheiter AR, Duff SM, Sarath G (1997) Soybean root nodule acid phosphatase. Plant Physiol 114(2):597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penuelas J et al (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934

    PubMed  Google Scholar 

  • Perez-Torres CA et al (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20(12):3258–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthoff DP et al (2007) GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. J Exp Bot 58(12):3407–3418

    Article  CAS  PubMed  Google Scholar 

  • Putri SP et al (2013a) Current metabolomics: practical applications. J Biosci Bioeng 115(6):579–589

    Article  CAS  PubMed  Google Scholar 

  • Putri SP et al (2013b) Current metabolomics: technological advances. J Biosci Bioeng 116(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Qi Z et al (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One 9(8):e104871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao Z et al (2016) Comprehensive comparative genomic and transcriptomic analyses of the legume genes controlling the nodulation process. Front Plant Sci 7:34

    PubMed  PubMed Central  Google Scholar 

  • Qin L et al (2012a) Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One 7(10):e47726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L et al (2012b) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159(4):1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Ribet J, Drevon JJ (1995) Phosphorus deficiency increases the acetylene-induced decline in nitrogenase activity in soybean (Glycine max (L.) Merr). J Exp Bot 46(291):1479–1486

    Article  CAS  Google Scholar 

  • Robson AD (1983) Mineral nutrition. In: Broughton W (ed) Nitrogen fixation. Clarendon, Oxford, pp 36–55

    Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3(2):288–299

    Article  CAS  PubMed  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Rychter AM, Randall DD (1994) The effect of phosphate deficiency on carbohydrate metabolism in bean roots. Physiol Plant 91(3):383–388

    Article  CAS  Google Scholar 

  • Sa T-M, Israel DW (1991) Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol 97(3):928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sample EC, Soper RJ, Racz GJ (1980) Reaction of phosphate fertilizers in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 263–310

    Google Scholar 

  • Sas L, Rengel Z, Tang C (2001) Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160(6):1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37(5):645–653

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt S, Gresshoff PM, Hause B (2013) Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 14(6):1–21

    Article  CAS  Google Scholar 

  • Schlueter JA et al (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47(5):868–876

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA et al (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8:330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ et al (2010) RNA-seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sha, A., M. Li, and P. Yang, Identification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis. Biochim Biophys Acta, 2016. 1864(5):427–4434.

    Google Scholar 

  • Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 13:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith F, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Sonah H et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8(1):e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H et al (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Song Q et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8(1):e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H et al (2014) Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant Cell Environ 37(2):462–472

    Article  CAS  PubMed  Google Scholar 

  • Song Q et al (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics 17:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura Y et al (2012) Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci Biotechnol Biochem 76(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Tang C et al (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot 88(1):131–138

    Article  CAS  Google Scholar 

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot 89(6):783–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46

    CAS  Google Scholar 

  • Tripathi N, Khare D (2016) Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review. Biotechnol Lett 38:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P et al (2015) Understanding water-stress responses in soybean using hydroponics system-a systems biology perspective. Front Plant Sci 6:1145

    PubMed  PubMed Central  Google Scholar 

  • Vadez V et al (1996) Nodule permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34(6):871–878

    CAS  Google Scholar 

  • Valdes-Lopez O et al (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31(12):1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Lopez O et al (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818

    Article  CAS  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127(2):390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance C, Uhde-stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  Google Scholar 

  • Wang X et al (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151(1):233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21(3):173–181

    Article  PubMed  CAS  Google Scholar 

  • Wang Q et al (2016) A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genomics 17(1):192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wanke M et al (1998) Response to phosphate deficiency in bean (Phaseolus vulgaris L.) roots. Respiratory metabolism, sugar localization and changes in ultrastructure of bean root cells. Ann Bot 82(6):809–819

    Article  CAS  Google Scholar 

  • Wiedmann RT, Smith TPL, Nonneman DJ (2008) SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genet 9:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wise RP et al (2007) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45:329–369

    Article  CAS  PubMed  Google Scholar 

  • Wu Z et al (2011) Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max. PLoS One 6(6):e19752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W et al (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107(23):10578–10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110(33):13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2014) A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci 5:768

    Article  PubMed  Google Scholar 

  • Yao Z, Tian J, Liao H (2014) Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann Bot 114(3):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305

    Article  CAS  PubMed  Google Scholar 

  • Young ND et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H et al (2015) Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398(1–2):207–227

    Google Scholar 

  • Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q et al (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322

    Article  CAS  Google Scholar 

  • Zhang DLC, Cheng H, Kan G, Cui S, Meng Q et al (2010) Quantitative trait loci associated with soybean tolerance to low-phosphorus stress based on flower and pod abscission. Plant Breed 129:243–249

    Article  CAS  Google Scholar 

  • Zhang D et al (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10(1):e1004061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J et al (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D et al (2016) High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci 7:372

    PubMed  PubMed Central  Google Scholar 

  • Zhao J et al (2004) Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull 49(15):1611–1620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Libault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zogli, P., Pingault, L., Libault, M. (2017). Physiological and Molecular Mechanisms and Adaptation Strategies in Soybean (Glycine max) Under Phosphate Deficiency. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer, Cham. https://doi.org/10.1007/978-3-319-55729-8_12

Download citation

Publish with us

Policies and ethics